Research Progress on the Intermediate Filament Cytoskeleton in Plant Cells
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [97]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Intermediate filaments (IFs) are cytoskeletal protein filaments with an apparent diameter of around 10 nm, intermediate between microtubules (25 nm) and microfilaments (5-7 nm). IFs have been found to form multiple types of proteins in different tissues and are tissue-specifically expressed during organismal development. In animal cells, IFs maintain cell and tissue morphology by providing mechanical stability, and many different genes encoding IF proteins have been identified. In the 1980s, intermediate filaments in plant cells were initially demonstrated by some immunological evidences. In recent years, a number of IF proteins have been discovered in plants that perform the same functions as animal IF. IF proteins can regulate gene expression by modulating the lamin-chromatin network. In this paper, we review the progress and results of the study of IF in plant cells, and a comprehensive and in-depth study of IF proteins in plants will be of great significance for the exploration of cytoskeletal functions.

    Reference
    [1] HERRMANN H, AEBI U. Intermediate filaments and their associates: Multi-talented structural elements specifying cytoarchitecture and cytodynamics [J]. Curr Opin Cell Biol, 2000, 12(1): 79-90. doi: 10. 1016/S0955-0674(99)00060-5.
    [2] GEISLER N, WEBER K. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins [J]. EMBO J, 1982, 1(12): 1649-1656. doi: 10.1002/j.1460-2075.1982.tb01368.x.
    [3] MCLACHLAN A D, STEWART M, SMILLIE L B. Sequence repeats in α-tropomyosin [J]. J Mol Biol, 1975, 98(2): 281-291. doi: 10.1016/S0022-2836(75)80118-5.
    [4] PARRY D A D, STEINERT P M. Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism [J]. Quart Rev Biophys, 1999, 32(2): 99-187. doi: 10.1017/S0033583500003516.
    [5] ISHIKAWA H, BISCHOFF R, HOLTZER H. Mitosis and intermediate-sized filaments in developing skeletal muscle [J]. J Cell Biol, 1968, 38(3): 538-555. doi: 10.1083/jcb.38.3.538.
    [6] PRUSS R M, MIRSKY R, RAFF M C, et al. All classes of inter-mediate filaments share a common antigenic determinant defined by a monoclonal antibody [J]. Cell, 1981, 27(3): 419-428. doi: 10.1016/0092-8674(81)90383-4.
    [7] GEISLER N, WEBER K. Comparison of the proteins of two immu-nologically distinct intermediate-sized filaments by amino acid sequence analysis: Desmin and vimentin [J]. Proc Natl Acad Sci USA, 1981, 78(7): 4120-4123. doi: 10.1073/pnas.78.7.4120.
    [8] LAZARIDES E. Intermediate filaments as mechanical integrators of cellular space [J]. Nature, 1980, 283(5744): 249-255. doi: 10.1038/283249a0.
    [9] STEINERT P M, MAREKOV L N, PARRY D A. Diversity of inter-mediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments [J]. J Biol Chem, 1993, 268(33): 24916-24925. doi: 10.1016/S0021-9258(19)74552-9.
    [10] HERRMANN H, AEBI U. Intermediate filament assembly: Tempe-rature sensitivity and polymorphism [J]. Cell Mol Life Sci, 1999, 55(11): 1416-1431. doi: 10.1007/s000180050382.
    [11] HERRMANN H, HÄNER M, BRETTEL M, et al. Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains [J]. J Mol Biol, 1996, 264(5): 933-953. doi: 10.1006/jmbi.1996.0688.
    [12] SMALL J V, SOBIESZEK A. Studies on the function and composition of the 10-nm (100-å) filaments of vertebrate smooth muscle [J]. J Cell Sci, 1977, 23(1): 243-268. doi: 10.1242/jcs.23.1.243.
    [13] STARGER J M, BROWN W E, GOLDMAN A E, et al. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells [J]. J Cell Biol, 1978, 78(1): 93-109. doi: 10.1083/jcb.78.1.93.
    [14] HATZFELD M, FRANKE W W. Pair formation and promiscuity of cytokeratins: Formation in vitro of heterotypic complexes and inter-mediate-sized filaments by homologous and heterologous recombi-nations of purified polypeptides [J]. J Cell Biol, 1985, 101(5): 1826-1841. doi: 10.1083/jcb.101.5.1826.
    [15] GUZENKO D, CHERNYATINA A A, STRELKOV S V. Crystallo-graphic studies of intermediate filament proteins [J]. Subcell Biochem, 2017, 82: 151-170. doi: 10.1007/978-3-319-49674-0_6.
    [16] LANGBEIN L, ROGERS M A, WINTER H, et al. The catalog of human hair keratins: II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins [J]. J Biol Chem, 2001, 276(37): 35123-35132. doi: 10.1074/jbc.M103305200.
    [17] WICHE G. Role of plectin in cytoskeleton organization and dynamics [J]. J Cell Sci, 1998, 111(17): 2477-2486. doi: 10.1242/jcs.111.17.2477.
    [18] LI R, MESSING A, GOLDMAN J E, et al. GFAP mutations in Alexander disease [J]. Int J Dev Neurosci, 2002, 20(3/4/5): 259-268. doi: 10.1016/S0736-5748(02)00019-9.
    [19] MERSIYANOVA I V, PEREPELOV A V, POLYAKOV A V, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene [J]. Am J Hum Genet, 2000, 67(1): 37-46. doi: 10.1086/302962.
    [20] LARIVIERE R C, JULIEN J P. Functions of intermediate filaments in neuronal development and disease [J]. J Neurobiol, 2004, 58(1): 131-148. doi: 10.1002/neu.10270.
    [21] GARG A. Acquired and inherited lipodystrophies [J]. N Engl J Med, 2004, 350(12): 1220-1234. doi: 10.1056/NEJMra025261.
    [22] DE SANDRE-GIOVANNOLI A, CHAOUCH M, KOZLOV S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse [J]. Am J Hum Genet, 2002, 70(3): 726-736. doi: 10.1086/339274.
    [23] MOUNKES L C, KOZLOV S, HERNANDEZ L, et al. A progeroid syndrome in mice is caused by defects in A-type lamins [J]. Nature, 2003, 423(6937): 298-301. doi: 10.1038/nature01631.
    [24] POWELL A J, PEACE G W, SLABAS A R, et al. The detergent-resistant cytoskeleton of higher plant protoplasts contains nucleus-associated fibrillar bundles in addition to microtubules [J]. J Cell Sci, 1982, 56(1): 319-335. doi: 10.1242/jcs.56.1.319.
    [25] MILLER C C J, DUCKETT J G, DOWNES M J, et al. Plant cytoske-letons contain intermediate filament-related proteins [J]. Biochem Soc Trans, 1985, 13(5): 960-961. doi: 10.1042/bst0130960.
    [26] PARKE J M, MILLER C C J, COWELL I, et al. Monoclonal anti-bodies against plant proteins recognise animal intermediate filaments [J]. Cell Motil Cytoskeleton, 1987, 8(4): 312-323. doi: 10.1002/cm. 970080404.
    [27] GOODBODY K C, HARGREAVES A J, LLOYD C W. On the distri-bution of microtubule-associated intermediate filament antigens in plant suspension cells [J]. J Cell Sci, 1989, 93(3): 427-438. doi: 10. 1242/jcs.93.3.427.
    [28] HARGREAVES A J, DAWSON P J, BUTCHER G W, et al. A monoclonal antibody raised against cytoplasmic fibrillar bundles from carrot cells, and its cross-reaction with animal intermediate filaments [J]. J Cell Sci, 1989, 92(3): 371-378. doi: 10.1242/jcs.92.3.371.
    [29] SU F, GU W, ZHAI Z H. Keratin-like intermediate filaments in plant leaf cells [J]. Sci China (Ser B), 1990, 3: 267-270, 337-340. [苏菲, 顾伟, 翟中和. 植物叶肉细胞的类角蛋白中间纤维[J]. 中国科学(B辑), 1990(3): 267-270, 337-340.]
    [30] UTSUNOMIYA H, FUJITA M, NAITO F, et al. Cell cycle-dependent dynamics of a plant intermediate filament motif protein with intra-cellular localization related to microtubules [J]. Protoplasma, 2020, 257(5): 1387-1400. doi: 10.1007/s00709-020-01512-1.
    [31] ZHAO D Z, CHEN D Y, YANG C, et al. Research progress on plant intermediate filament [J]. Chin Sci Bull, 1999, 44(14): 1469-1474. [赵大中, 陈丹英, 杨澄, 等. 植物中间纤维研究进展[J]. 科学通报, 1999, 44(14): 1469-1474. doi: 10.3321/j.issn:0023-074X.1999.14.002.]
    [32] SU F, GU W, ZHAI Z H. The keratin intermediate filament-like system in maize protoplasts [J]. Cell Res, 1990, 1(1): 11-16. doi: 10.1038/cr. 1990.2.
    [33] YANG C, XING L, ZHAI Z. Intermediate filaments in higher plant cells and their assembly in a cell-free system [J]. Protoplasma, 1992, 171(1): 44-54. doi: 10.1007/BF01379279.
    [34] MIN G W, YANG C, TONG X J, et al. Assembly characteristics of plant keratin intermediate filaments in vitro [J]. Sci China Ser C Life Sci, 1999, 42(5): 485-493. doi: 10.1007/BF02881772.
    [35] ZHAO D Z, CHEN D Y, CHEN M, et al. The existence of intermediate filament in Arabidopsis thaliana cell [J]. Acta Bot Sin, 1999, 41(8): 795-799. [赵大中, 陈丹英, 陈敏, 等. 拟南芥细胞中存在中间纤维的研究[J]. 植物学报, 1999, 41(8): 795-799. doi: 10.3321/j.issn: 1672-9072.1999.08.002.]
    [36] ZHAO D Z, CHEN D Y, YANG C, et al. Sequence analysis of keratin-like proteins and cloning of intermediate filament-like cDNA from higher plant cells [J]. Sci China Ser C Life Sci, 2000, 43(3): 265-271. [赵大中, 陈丹英, 杨澄, 等. 植物细胞类角蛋白的纯化、序列分析与类中间纤维cDNA的克隆[J]. 中国科学(C辑), 2000, 30(3): 316-321. doi: 10.3969/j.issn.1674-7232.2000.03.015.]
    [37] WAN K M, NICKERSON J A, KROCKMALNIC G, et al. The nuclear matrix prepared by amine modification [J]. Proc Natl Acad Sci USA, 1999, 96(3): 933-938. doi: 10.1073/pnas.96.3.933.
    [38] JACKSON D A, COOK P R. Visualization of a filamentous nucleoske-leton with a 23 nm axial repeat [J]. EMBO J, 1988, 7(12): 3667-3677. doi: 10.1002/j.1460-2075.1988.tb03248.x.
    [39] HEPLER P K, VIDALI L, CHEUNG A Y. Polarized cell growth in higher plants [J]. Annu Rev Cell Dev Biol, 2001, 17(1): 159-187. doi: 10.1146/annurev.cellbio.17.1.159.
    [40] KETELAAR T, FAIVRE-MOSKALENKO C, ESSELING J J, et al. Positioning of nuclei in Arabidopsis root hairs: An Actin-regulated process of tip growth [J]. Plant Cell, 2002, 14(11): 2941-2955. doi: 10. 1105/tpc.005892.
    [41] GROSS P, JULIUS C, SCHMELZER E, et al. Translocation of cyto-plasm and nucleus to fungal penetration sites is associated with deploy-merization of microtubules and defence gene activation in infected, cultured parsley cells [J]. EMBO J, 1993, 12(5): 1735-1744. doi: 10. 1002/j.1460-2075.1993.tb05821.x.
    [42] GRAUMANN K, RUNIONS J, EVANS D E. Nuclear envelope proteins and their role in nuclear positioning and replication [J]. Biochem Soc Trans, 2010, 38(3): 741-746. doi: 10.1042/BST0380741.
    [43] MELLAD J A, WARREN D T, SHANAHAN C M. Nesprins LINC the nucleus and cytoskeleton [J]. Curr Opin Cell Biol, 2011, 23(1): 47-54. doi: 10.1016/j.ceb.2010.11.006.
    [44] DECHAT T, PFLEGHAAR K, SENGUPTA K, et al. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin [J]. Genes Dev, 2008, 22(7): 832-853. doi: 10.1101/gad. 1652708.
    [45] GRUENBAUM Y, MARGALIT A, GOLDMAN R D, et al. The nuclear lamina comes of age [J]. Nat Rev Mol Cell Biol, 2005, 6(1): 21-31. doi: 10.1038/nrm1550.
    [46] FISEROVA J, KISELEVA E, GOLDBERG M W. Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells [J]. Plant J, 2009, 59(2): 243-255. doi: 10.1111/j.1365-313X.2009. 03865.x.
    [47] WILSON K L, BERK J M. The nuclear envelope at a glance [J]. J Cell Sci, 2010, 123(12): 1973-1978. doi: 10.1242/jcs.019042.
    [48] MEIER I. Composition of the plant nuclear envelope: Theme and variations [J]. J Exp Bot, 2007, 58(1): 27-34. doi: 10.1093/jxb/erl009.
    [49] GRAUMANN K, EVANS D E. Plant SUN domain proteins: Compo-nents of putative plant LINC complexes? [J]. Plant Sign Behav, 2010, 5(2): 154-156. doi: 10.4161/psb.5.2.10458.
    [50] GHOSH S, DEY R. Nuclear matrix network in Allium cepa [J]. Chromosoma, 1986, 93(5): 429-434. doi: 10.1007/BF00285825.
    [51] GALCHEVA-GARGOVA Z I, MARINOVA E I, KOLEVA S T. Isolation of nuclear shells from plant cells [J]. Plant Cell Environ, 1988, 11(9): 819-825. doi: 10.1111/j.1365-3040.1988.tb01907.x.
    [52] MCNULTY A K, SAUNDERS M J. Purification and immunological detection of pea nuclear intermediate filaments: Evidence for plant nuclear lamins [J]. J Cell Sci, 1992, 103(2): 407-414. doi: 10.1242/jcs. 103.2.407.
    [53] BLUMENTHAL S S D, CLARK G B, ROUX S J. Biochemical and immunological characterization of pea nuclear intermediate filament proteins [J]. Planta, 2004, 218(6): 965-975. doi: 10.1007/s00425-003-1182-5.
    [54] RADULESCU A E, CLEVELAND D W. NuMA after 30 years: The matrix revisited [J]. Trends Cell Biol, 2010, 20(4): 214-222. doi: 10. 1016/j.tcb.2010.01.003.
    [55] KIVINEN K, TAIMEN P, KALLAJOKI M. Silencing of nuclear mitotic apparatus protein (NuMA) accelerates the apoptotic disintegration of the nucleus [J]. Apoptosis, 2010, 15(8): 936-945. doi: 10.1007/s10495-010-0506-8.
    [56] GUETH-HALLONET C, WANG J, HARBORTH J, et al. Induction of a regular nuclear lattice by overexpression of NuMA [J]. Exp Cell Res, 1998, 243(2): 434-452. doi: 10.1006/excr.1998.4178.
    [57] YU W D, DE LA ESPINA S M D. The plant nucleoskeleton: Ultra-structural organization and identification of NuMA homologues in the nuclear matrix and mitotic spindle of plant cells [J]. Exp Cell Res, 1999, 246(2): 516-526. doi: 10.1006/excr.1998.4334.
    [58] MASUDA K, XU Z J, TAKAHASHI S, et al. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain [J]. Exp Cell Res, 1997, 232(1): 173-181. doi: 10. 1006/excr.1997.3531.
    [59] INOUÉ S. The role of microtubule assembly dynamics in mitotic force generation and functional organization of living cells [J]. J Struct Biol, 1997, 118(2): 87-93. doi: 10.1006/jsbi.1996.3839.
    [60] PETER M, NAKAGAWA J, DORÉE M, et al. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase [J]. Cell, 1990, 61(4): 591-602. doi: 10.1016/0092-8674(90)90471-P.
    [61] MASUDA K, TAKAHASHI S, NOMURA K, et al. Residual structure and constituent proteins of the peripheral framework of the cell nucleus in somatic embryos from Daucus carota L. [J]. Planta, 1993, 191(4): 532-540. doi: 10.1007/BF00195755.
    [62] CISKA M, MASUDA K, DE LA ESPINA S M D. Lamin-like analogues in plants: The characterization of NMCP1 in Allium cepa [J]. J Exp Bot, 2013, 64(6): 1553-1564. doi: 10.1093/jxb/ert020.
    [63] GINDULLIS F, PEFFER N J, MEIER I. MAF1, a Novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope [J]. Plant Cell, 1999, 11(9): 1755-1767. doi: 10.1105/tpc.11.9.1755.
    [64] ROSE A, GINDULLIS F, MEIER I. A novel α-helical protein, specific to and highly conserved in plants, is associated with the nuclear matrix fraction [J]. J Exp Bot, 2003, 54(385): 1133-1141. doi: 10.1093/jxb/erg114.
    [65] MÍNGUEZ A, MORENO DÍAZ DE LA ESPINA S. Immunological characterization of lamins in the nuclear matrix of onion cells [J]. J Cell Sci, 1993, 106(1): 431-439. doi: 10.1242/jcs.106.1.431.
    [66] SAKAMOTO Y, TAKAGI S. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana [J]. Plant Cell Physiol, 2013, 54(4): 622-633. doi: 10.1093/pcp/pct031.
    [67] DITTMER T A, STACEY N J, SUGIMOTO-SHIRASU K, et al. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana [J]. Plant Cell, 2007, 19(9): 2793-2803. doi: 10.1105/tpc.107. 053231.
    [68] VAN ZANTEN M, KOINI M A, GEYER R, et al. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation [J]. Proc Natl Acad Sci USA, 2011, 108(50): 20219-20224. doi: 10.1073/pnas.1117726108.
    [69] VAN ZANTEN M, CARLES A, LI Y, et al. Control and consequences of chromatin compaction during seed maturation in Arabidopsis thaliana [J]. Plant Signal Behav, 2012, 7(3): 338-341. doi: 10.4161/psb.19281.
    [70] WANG H Y, DITTMER T A, RICHARDS E J. Arabidopsis CROW-DED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization [J]. BMC Plant Biol, 2013, 13(1): 200. doi: 10.1186/1471-2229-13-200.
    [71] GOTO C, TAMURA K, FUKAO Y, et al. The novel nuclear envelope protein KAKU4 modulates nuclear morphology in Arabidopsis [J]. Plant Cell, 2014, 26(5): 2143-2155. doi: 10.1105/tpc.113.122168.
    [72] GRAUMANN K. Evidence for LINC1-SUN associations at the plant nuclear periphery [J]. PLoS One, 2014, 9(3): e93406. doi: 10.1371/journal.pone.0093406.
    [73] MURPHY S P, SIMMONS C R, BASS H W. Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: Evidence for the existence of two divergent classes of SUN proteins in plants [J]. BMC Plant Biol, 2010, 10(1): 269. doi: 10.1186/1471-2229-10-269.
    [74] MIKULSKI P, HOHENSTATT M L, FARRONA S, et al. The chro-matin-associated protein PWO1 interacts with plant nuclear lamin-like components to regulate nuclear size [J]. Plant Cell, 2019, 31(5): 1141-1154. doi: 10.1105/tpc.18.00663.
    [75] SOLOVEI I, WANG A S, THANISCH K, et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation [J]. Cell, 2013, 152(3): 584-598. doi: 10.1016/j.cell. 2013.01.009.
    [76] BRONSHTEIN I, KEPTEN E, KANTER I, et al. Loss of lamin A function increases chromatin dynamics in the nuclear interior [J]. Nat Commun, 2015, 6(1): 8044. doi: 10.1038/ncomms9044.
    [77] ZHENG X B, HU J B, YUE S B, et al. Lamins organize the global three-dimensional genome from the nuclear periphery [J]. Mol Cell, 2018, 71(5): 802-815.e7. doi: 10.1016/j.molcel.2018.05.017.
    [78] KIMURA Y, KURODA C, MASUDA K. Differential nuclear envelope assembly at the end of mitosis in suspension-cultured Apium graveolens cells [J]. Chromosoma, 2010, 119(2): 195-204. doi: 10.1007/s00412-009-0248-y.
    [79] CISKA M, DE LA ESPINA S M D. NMCP/LINC proteins: Putative lamin analogs in plants? [J]. Plant Sign Behav, 2013, 8(12): e26669. doi: 10.4161/psb.26669.
    [80] CISKA M, MASUDA K, DE LA ESPINA S M D. Characterization of the lamin analogue NMCP2 in the monocot Allium cepa [J]. Chromo-soma, 2018, 127(1): 103-113. doi: 10.1007/s00412-017-0649-2.
    [81] HU B, WANG N, BI X L, et al. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery [J]. Genome Biol, 2019, 20(1): 87. doi: 10.1186/s13059-019-1694-3.
    [82] PAWAR V, POULET A, DÉTOURNÉ G, et al. A novel family of plant nuclear envelope-associated proteins [J]. J Exp Bot, 2016, 67(19): 5699-5710. doi: 10.1093/jxb/erw332.
    [83] ZHAO W M, GUAN C M, FENG J, et al. The Arabidopsis CROW-DED NUCLEI genes regulate seed germination by modulating degra-dation of ABI5 protein [J]. J Integr Plant Biol, 2016, 58(7): 669-678. doi: 10.1111/jipb.12448.
    [84] GUO T T, MAO X G, ZHANG H, et al. Lamin-like proteins negatively regulate plant immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabi-dopsis thaliana [J]. Mol Plant, 2017, 10(10): 1334-1348. doi: 10.1016/j.molp.2017.09.008.
    [85] WANG C, ZHANG L J, HUANG R D. Cytoskeleton and plant salt stress tolerance [J]. Plant Sign Behav, 2011, 6(1): 29-31. doi: 10.4161/psb.6.1.14202.
    [86] SODA N, SHARAN A, GUPTA B K, et al. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance [J]. Sci Rep, 2016, 6(1): 34762. doi: 10.1038/srep34762.
    [87] SODA N, GUPTA B K, ANWAR K, et al. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress [J]. Sci Rep, 2018, 8(1): 4072. doi: 10.1038/s41598-018-22131-0.
    [88] YANG J, CHANG Y, QIN Y H, et al. A lamin-like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice [J]. New Phytol, 2020, 227(1): 65-83. doi: 10.1111/nph.16518.
    [89] XING L, HUANG J H, YANG C. Keratin-like intermediate filaments in plant root tip cells [J]. Sci Bull, 1991(8): 623-626. [邢力, 黄景花, 杨澄. 植物根尖细胞的类角蛋白中间纤维[J]. 科学通报, 1991(8): 623-626.]
    [90] YANG C, XING L, ZHAI Z H. Intermediate filaments of plants and their in vitro reassembly [J]. Sci China (Ser B), 1992, 22(10): 1052-1057. [杨澄, 邢力, 翟中和. 植物的中间纤维及其在体外重装配[J]. 中国科学(B辑), 1992, 22(10): 1052-1057.]
    [91] CHEN D Y, ZHAO Y, ZHAO D Z, et al. Study of intermediate fila-ments in Adiantum philippense and comparative analysis of karetin-like proteins in some plant species [J]. Acta Bot Sin, 1998, 40(9): 790-795. [陈丹英, 赵允, 赵大中, 等. 铁线蕨中间纤维的研究及某些植物类角蛋白的比较分析[J]. 植物学报, 1998, 40(9): 790-795. doi: 10.3321/j.issn:1672-9072.1998.09.003.]
    [92] CAI S T, ZHAI Z H, ZENG C M, et al. Detection of nuclear matrix and intermediate filament scaffold in Crypthecodinium cohnii [J]. Acta Biol Exp Sin, 1991, 24(1): 33-43. [蔡树涛, 翟中和, 曾丛梅, 等. 寇氏隐甲藻(Crypthecodinium cohnii)细胞核骨架与中间纤维的研究[J]. 实验生物学报, 1991, 24(1): 33-43.]
    [93] ZEE S Y. “Chromosome exo-skeleton” in plant cells visualized by scanning electron microscopy [J]. Protoplasma, 1992, 170(1): 86-89. doi: 10.1007/BF01384460.
    [94] XU S X. Colloidal gold labelling, transmission and scanning electron microscopy of cytoskeleton in the isolated generative cells of Alla-manda schottii [J]. Chin Bull Bot, 1993, 5(2): 110-113.
    [95] XU S X, ZHU C. Plant Cytoskeleton [M]. Beijing: Science Press, 1996: 55-57. [徐是雄, 朱澂. 植物细胞骨架[M]. 北京: 科学出版社, 1996: 55-57.]
    [96] WANG J, YANG C, ZHAI Z H. The nuclear lamina in male generative cells of Ginkgo biloba [J]. Sex Plant Reprod, 1996, 9(4): 238-242. doi: 10.1007/BF02173105.
    [97] WANG J, YANG C, RIS H, et al. Detailed structure of the plant lamin and its assembly in vitro [J]. Sci China (Ser C), 1998, 28(2): 136-142. [汪健, 杨澄, RIS H, 等. 植物核纤层的精细结构及其体外装配[J]. 中国科学(C辑), 1998, 28(2): 136-142.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

毕筱瑞,葛博浩,陈玉珍,卢存福.植物细胞骨架中间纤维研究进展[J].热带亚热带植物学报,2025,33(2):229~240

Copy
Share
Article Metrics
  • Abstract:9
  • PDF: 12
  • HTML: 4
  • Cited by: 0
History
  • Received:February 04,2024
  • Revised:May 10,2024
  • Online: April 03,2025
Article QR Code