Identification and Expression Characteristics of Chitinase Gene Families in Kiwifruit
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to explore the characteristics and functions of the chitinase gene family (CHis), eighteen AcCHi genes were identified from Actinidia chinensis. The phylogenetic analysis showed that they clustered in GH18 and GH19 clusters and were divided into 6 groups with high similarity in conserved domain, gene structure and protein structure among the members. The cis-acting elements of AcCHi genes promoter region were mainly involved in hormone response, abiotic stress response and growth and development regulation. The 18 AcCHi genes were unevenly distributed on 12 chromosomes, and 5 of them had fragment duplication. The expression of AcCHis might be regulated by miR172 and miR408. In AcCHis, the transcription of GH18 members and GH19 members in different tissues, such as mature fruit, young fruit, leaf, stem, flower, was significantly different. During the storage of kiwifruit fruit, 90.9% of GH18 members had no or low expression, however, 71.4% of GH19 members showed differential expression. The expression of AcCHi8 in fruits was up-regulated at 25 ℃ for 1 week and at 4 ℃ for 1 to 3 weeks, and the expression of AcCHi8 was the highest at 4 ℃ for 3 weeks (188 times to the control), while the expression of AcCHi8 was down-regulated at 25 ℃ for 1 week after ABA soaking. Therefore, it was suggested that AcCHi genes might be involved in the process of storage and softening of postharvest fruits.

    Reference
    [1] BHATTACHARYA D, NAGPURE A, GUPTA R K. Bacterial chitinases: Properties and potential [J]. Crit Rev Biotechnol, 2007, 27(1): 21-28. doi: 10.1080/07388550601168223.
    [2] GROVER A. Plant chitinases: Genetic diversity and physiological roles [J]. Crit Rev Plant Sci, 2012, 31(1): 57-73. doi: 10.1080/07352689. 2011.616043.
    [3] CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics [J]. Nucl Acids Res, 2009, 37(S1): D233-D238. doi: 10. 1093/nar/gkn663.
    [4] HENRISSAT B. A classification of glycosyl hydrolases based on amino acid sequence similarities [J]. Biochem J, 1991, 280(2): 309-316. doi: 10.1042/bj2800309.
    [5] CLETUS J, BALASUBRAMANIAN V, VASHISHT D, et al. Transgenic expression of plant chitinases to enhance disease resistance [J]. Biotechnol Lett, 2013, 35(11): 1719-1732. doi: 10.1007/s10529-0131269-4.
    [6] PASSARINHO P A, DE VRIES S C. Arabidopsis chitinases: A genomic survey [J]. Arabidops Book, 2002, 1: e0023. doi: 10.1199/tab. 0023.
    [7] XU J, XU X Y, TIAN L L, et al. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton [J]. Sci Rep, 2016, 6: 29022. doi: 10.1038/srep29 022.
    [8] PAN X X, HU M Y, WANG Z W, et al. Genome-wide analysis of the rice chitinases gene family and their expression profiles under different stress treatments [J]. Plant Physiol J, 2022, 58(4): 746-756. [潘晓雪, 胡明瑜, 王忠伟, 等. 水稻几丁质酶基因家族的全基因组鉴定及表达分析 [J]. 植物生理学报, 2022, 58(4): 746-756. doi: 10.13592/j. cnki.ppj.2021.0401.]
    [9] LIU Z Y, YU W F, CAI W L, et al. Genome-wide identification and expression analysis of CTL gene family memebers in Capsicum annuum L. [J]. Chin J Trop Crops, 2021, 42(11): 3101-3110. [刘卓毅, 于文菲, 蔡文丽, 等. 辣椒几丁质酶类基因家族的全基因组鉴定和表达特征分析 [J]. 热带作物学报, 2021, 42(11): 3101-3110. doi: 10. 3969/j.issn.1000-2561.2021.11.008.]
    [10] GONG K L, CHEN S H, JI X C, et al. The research progress of plant chitinases [J]. Mol Plant Breed, 2019, 17(20): 6840-6849. [巩凯玲, 陈双慧, 纪晓晨, 等. 植物几丁质酶的研究进展 [J]. 分子植物育种, 2019, 17(20): 6840-6849. doi: 10.13271/j.mpb.017.006840.]
    [11] SINGH H R, DEKA M, DAS S. Enhanced resistance to blister blight in transgenic tea [Camellia sinensis (L.) O. Kuntze] by overexpression of class I chitinase gene from potato (Solanum tuberosum) [J]. Funct Integr Genom, 2015, 15(4): 461-480. doi: 10.1007/s10142-015-0436-1.
    [12] LIN Q M, WANG X, ZHAO D F, et al. Identification of banana chitinase gene family and analysis of its expression in fusarium wilt infection [J]. J Plant Genet Resources, 2022, 23(1): 272-280. [林秋妹, 王霞, 赵东方, 等. 香蕉几丁质酶基因家族的鉴定及在枯萎病侵染时的表达分析 [J]. 植物遗传资源学报, 2022, 23(1): 272-280. doi: 10.13430/j.cnki.jpgr.20210622001.]
    [13] JU D. Induced-responses of the Chilo suppressalis to resistant rice cultivars and the expression pattern of chitinase gene OsCHIT15 [D]. Shenyang: Shenyang Agricultural University, 2019. [鞠迪. 抗螟水稻诱导二化螟防御反应及几丁质酶基因OsCHIT15的表达模式研究 [D]. 沈阳: 沈阳农业大学, 2019.]
    [14] ZHU C, ZHANG S T, CHANG X J, et al. Cloning and its expression analysis of chitinase under drought stress in Camellia sinensis [J]. Chin J Trop Crops, 2017, 38(5): 894-902. [朱晨, 张舒婷, 常笑君, 等. 茶树几丁质酶基因的克隆及其在干旱胁迫下的表达分析 [J]. 热带作物学报, 2017, 38(5): 894-902. doi: 10.3969/j.issn.1000-2561.2017. 05.018.]
    [15] LIANG Q F. The chitinase activities and gene expression of banana and the ripening after harvest [D]. Danzhou: South China University of Tropical Agriculture, 2006. [梁秋芬. 香蕉几丁质酶活性及基因表达与采后成熟 [D]. 儋州: 华南热带农业大学, 2006.]
    [16] XU Z, DAI J Y, LIANG L P, et al. Chitinase-like protein PpCTL1 contributes to maintaining fruit firmness by affecting cellulose biosynthesis during peach development [J]. Foods, 2023, 12(13): 2503. doi: 10.3390/foods12132503.
    [17] HUANG W J, ZHONG C H. Research advances in the postharvest physiology of kiwifruit [J]. Plant Sci J, 2017, 35(4): 622-630. [黄文俊, 钟彩虹. 猕猴桃果实采后生理研究进展 [J]. 植物科学学报, 2017, 35(4): 622-630. doi: 10.11913/PSJ.2095-0837.2017.40622.]
    [18] CHEN K S, ZHANG S L, LV J L, et al. Variation of abscisic acid, indole-3-acetic acid and ethylene in kiwifruit during fruit ripening [J]. Sci Agric Sin, 1997, 30(2): 54-57. [陈昆松, 张上隆, 吕均良, 等. 脱落酸、吲哚乙酸和乙烯在猕猴桃果实后熟软化进程中的变化 [J]. 中国农业科学, 1997, 30(2): 54-57.]
    [19] ZHANG M F, HE L, ZHANG M L, et al. Advances in preservation methods for kiwifruit [J]. Food Sci, 2014, 35(11): 343-347. [张美芳, 何玲, 张美丽, 等. 猕猴桃鲜果贮藏保鲜研究进展 [J]. 食品科学, 2014, 35(11): 343-347. doi: 10.7506/spkx1002-6630-201411066.]
    [20] XIN Y C, WANG D H, HAN S M, et al. Characterization of the chitinase gene family in mulberry (Morus notabilis) and MnChi18 Involved in resistance to botrytis cinerea [J]. Genes (Basel), 2021, 13 (1): 98. doi: 10.3390/genes13010098.
    [21] LEI J, BAN X W, LIU R, et al. Genome-wide identification and expression analysis of TCP gene family under abiotic stress in Coix lacryma-jobi L. [J]. Mol Plant Breed, 2023: 1-22. [雷静, 班秀文, 刘荣, 等. 薏苡(Coix lacryma-jobi L.) TCP家族全基因组鉴定及响应非生物胁迫的表达规律 [J]. 分子植物育种, 2023: 1-22.]
    [22] DUAN Q, HE Z B, WANG G L, et al. Genome-wide identification, evolution and expression analysis of the SBP gene family in castor beans (Ricinus communis L.) [J]. Mol Plant Breed, 2024. [段强, 何智彪, 王桂玲, 等. 蓖麻SBP基因家族全基因组鉴定、进化和表达分析 [J/OL]. 分子植物育种, 2024. [2023-05-10]. https://kns.cnki.net/ kcms/detail/46.1068.S.20230509.1513.012.html]
    [23] JI X R, YU Y H, NI P Y, et al. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development [J]. BMC Plant Biol, 2019, 19(1): 433.
    [24] CAO J, TAN X N. Comprehensive analysis of the chitinase family genes in tomato (Lycopersicon esculentum) [J]. Plants (Basel), 2019, 8(3): 52. doi: 10.3390/plants8030052.
    [25] HAXIM Y, KAHAR G, ZHANG X C, et al. Genome-wide characterization of the chitinase gene family in wild apple (Malus sieversii) and domesticated apple (Malus domestica) reveals its role in resistance to Valsa mali [J]. Front Plant Sci, 2022, 13: 1007936. doi: 10.3389/ fpls.2022.1007936.
    [26] CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biol, 2004, 4: 10. doi: 10.1186/1471-2229-4-10.
    [27] XU W, LIU J F, ZHANG G, et al. Genome-wide identification and expression analysis under Fusarium graminearum stress of chitinase gene family in Triticum aestivum L. [J]. J Henan Agric Sci, 2019, 48 (11): 7-17. [徐武, 刘建丰, 张戈, 等. 小麦几丁质酶基因家族的全基因组鉴定及禾谷镰刀菌胁迫下的表达分析 [J]. 河南农业科学, 2019, 48(11): 7-17. doi: 10.15933/j.cnki.1004-3268.2019.11.002.]
    [28] HU Y P, GUO Y J, JI Q H, et al. Analysis of structure, classification and evolution of chitinase gene family in citrus [J]. S China Fruits, 2022, 51(6): 16-21. [胡亚平, 郭雁君, 吉前华, 等. 柑桔几丁质酶基因家族的结构、分类与进化分析 [J]. 中国南方果树, 2022, 51(6): 16-21. doi: 10.13938/j.issn.1007-1431.20210291.]
    [29] LI H M, LI L L, CHEN Y M, et al. Bioinformatics analysis of chitinase gene family in Siraitia grosvenorii [J]. Chin J Bioinform, 2019, 17(3): 167-174. [李惠敏, 李璐璐, 陈玉梅, 等. 罗汉果几丁质酶基因家族的生物信息学分析 [J]. 生物信息学, 2019, 17(3): 167-174. doi: 10. 12113/j.issn.1672-5565.201903006.]
    [30] SONG Z P, PAN F L, LOU X P, et al. Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum [J]. Mol Biol Rep, 2019, 46(2): 1941-1954. doi: 10.1007/s11033-019-04644-7.
    [31] PAN X F, YE F T, MAO Z J, et al. Genomic identification and molecular evolution of the WRKY family in Nymphaea colorata [J]. Acta Hort Sin, 2022, 49(5): 1121-1135. [潘鑫峰, 叶方婷, 毛志君, 等. 睡莲WRKY家族的全基因组鉴定和分子进化分析 [J]. 园艺学报, 2022, 49(5): 1121-1135. doi: 10.16420/j.issn.0513-353x.2021-0092.]
    [32] ZHAO W, LIU Y H, LI L, et al. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut (Juglans regia L.) [J]. Front Genet, 2021, 12: 632509. doi: 10.3389/fgene.2021.632509.
    [33] XU J L, ZHANG W J, XIANG F N. Advances in stress inducible promoter and cis-acting elements in higher plants [J]. Plant Physiol J, 2021, 57(4): 759-766. [徐金龙, 张文静, 向凤宁. 植物盐胁迫诱导启动子及其顺式作用元件研究进展 [J]. 植物生理学报, 2021, 57(4): 759-766. doi: 10.13592/j.cnki.ppj.2020.0221.]
    [34] ZHU J K. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313-324. doi: 10.1016/j.cell.2016.08.029.
    [35] LI Z X, CHEN X B. Research advances on plant inducible promoters and related cis-acting elements [J]. Biotechnol Bull, 2015, 31(10): 815. [李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展 [J]. 生物技术通报, 2015, 31(10): 8-15. doi: 10.13560/j.cnki. biotech.bull.1985.2015.10.006.]
    [36] LIU J H, XU B Y, ZHANG J B, et al. A class Ⅲ acidic chitinase gene was closely correlated with postharvest banana fruit ripening [J]. Acta Bot Boreali-Occid Sin, 2010, 30(10): 2022-2027. [刘菊华, 徐碧玉, 张建斌, 等. 香蕉一个III类酸性几丁质酶基因与果实成熟关系的研究(英文) [J]. 西北植物学报, 2010, 30(10): 2022-2027.]
    [37] WANG Y, HE S H, PEI Y L, et al. Transcription characterization of FaChi1-FaChi4 and their responses to drought stress, exogenous abscisic acid and Botrytis cinerea in strawberry fruit [J]. J China Agric Univ, 2015, 20(6): 108-116. [王亚, 贺绥欢, 裴越琳, 等. 草莓几丁质酶基因FaChi1-FaChi4的转录特性及其对干旱胁迫、外施脱落酸及灰霉菌的响应 [J]. 中国农业大学学报, 2015, 20(6): 108-116. doi: 10.11841/j.issn.1007-4333.2015.06.14.]
    [38] ROBINSON S P, JACOBS A K, DRY I B. A class IV chitinase is highly expressed in grape berries during ripening [J]. Plant Physiol, 1997, 114(3): 771-778. doi: 10.1104/pp.114.3.771.
    [39] CHUNG M Y, NATH U K, VREBALOV J, et al. Ectopic expression of miRNA172 in tomato (Lycopersicon esculentum) reveals novel function in fruit development through regulation of an AP2 transcription factor [J]. BMC Plant Biol, 2020, 20(1): 283. doi: 10.1186/s12870-02002489-y.
    [40] DEBERNARDI J M, GREENWOOD J R, FINNEGAN E J, et al. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat [J]. Plant J, 2020, 101(1): 171-187. doi: 10.1111/tpj.14528.
    [41] LAKHOTIA H, JOSHI G, BHARDWAJ A R, et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing [J]. BMC Plant Biol, 2014, 14: 6. doi: 10.1186/1471-222914-6.
    [42] HU Y J, JI J Y, CHENG H, et al. The miR408a-BBP-LAC3/CSD1 module regulates anthocyanin biosynthesis mediated by crosstalk between copper homeostasis and ROS homeostasis during light induction in Malus plants [J]. J Adv Res, 2023, 51: 27-44. doi: 10. 1016/j.jare.2022.11.005.
    [43] XU X P. The whole-genome wide identification of miRNA and functional study of miR408 during early somatic embryogenesis in Dimocarpus longan Lour. [D]. Fuzhou: Fujian Agriculture and Forestry University, 2022. [徐小萍. 龙眼体胚发生早期miRNA全基因组鉴定与miR408功能研究 [D]. 福州: 福建农林大学, 2022.]
    [44] YU W F. Functional study of chitinase-like gene PaCTL1 in petunia [D]. Fuzhou: Fujian Agriculture and Forestry University, 2022. [于文菲. 矮牵牛几丁质酶类基因PaCTL1的功能研究 [D]. 福州: 福建农林大学, 2022.]
    [45] YUAN X Y, XU S P, SONG C X, et al. Bioinformatics and expression analysis of a chitinase gene from Phalaenopsis spp. [J]. Acta Bot Boreali-Occid Sin, 2016, 36(2): 241-248. [袁秀云, 许申平, 宋彩霞, 等. 蝴蝶兰几丁质酶基因的克隆及表达特性分析 [J]. 西北植物学报, 2016, 36(2): 241-248. doi: 10.7606/j.issn.1000-4025.2016.02.0241.]
    [46] ZHOU J, HUANG J. Cloning and functional identification of chitinase gene SlChi in Salix [J]. Mol Plant Breed, 2018, 16(24): 8013-8021. [周洁, 黄婧. 柳树几丁质酶基因SlChi的克隆和功能验证 [J]. 分子植物育种, 2018, 16(24): 8013-8021. doi: 10.13271/j. mpb.016.008013.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘晓驰,路喻丹,冯新,高敏霞,赖瑞联,陈桂信,陈义挺.猕猴桃几丁质酶基因家族的鉴定和表达特征分析[J].热带亚热带植物学报,2025,33(1):1~14

Copy
Share
Article Metrics
  • Abstract:65
  • PDF: 98
  • HTML: 66
  • Cited by: 0
History
  • Received:October 13,2023
  • Revised:December 28,2023
  • Online: February 18,2025
Article QR Code