Response of Anatomical Structure and Physiological Characteristics of Akebia trifoliata Leaves to Acid Rain Stress and Relieving Effect of Titanium
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To explore the response mechanism of Akebia trifoliata to acid rain stress and the effect of exogenous titanium [Ti(SO4)2] on its acid resistance, the changes in leaf anatomy and physiological characteristics were studied after simulated acid rain and exogenous titanium treatment, and the principal component analysis and correlation analysis were performed. The results showed that compared with the control, the lateral vein and epidermal structure of leaves were seriously damaged under simulated acid rain (T0) treatment, the main vein, main vein vascular bundle, leaf and palisade tissues were thickening, the chlorophyll content was significantly decreased, the oxygen free radical production rate, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly increased. Exogenous titanium treatments (T1-T3) effectively alleviated the damage of lateral vein and epidermal of leaves, significantly increased chlorophyll content, SOD, POD and CAT activities, and maintained a low rate of oxygen free radical production. Principal component analysis showed that main vein, vascular bundle and leaf thickness played a key role in response mechanism to acid rain stress. Correlation analysis showed that there were significantly positive correlations among vascular bundle thickness, palisade tissue thickness, leaf tissue structure tightness, activities of SOD, POD and CAT. Therefore, the seedlings of A. trifoliata could adapt to acid rain stress by changing the leaf anatomical structure and increasing the activities of SOD, POD and CAT. Appropriate Ti could effectively alleviate the damage caused by acid rain stress, and 0.2 mmol/L Ti had the best effect.

    Reference
    [1] CALVERT J G, LAZRUS A, KOK G L, et al. Chemical mechanisms of acid generation in the troposphere [J]. Nature, 1985, 317(6032): 27–35. doi: 10.1038/317027a0.
    [2] MA Y D, WANG B, ZHANG R M, et al. Initial simulated acid rain impacts reactive oxygen species metabolism and photosynthetic abilities in Cinnamonum camphora undergoing high temperature [J]. Ind Crops Prod, 2019, 135: 352–361. doi: 10.1016/j.indcrop.2019.04.050.
    [3] DOLATABADIAN A, SANAVY S A M M, GHOLAMHOSEINI M, et al. The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain [J]. Physiol Mol Biol Plants, 2013, 19(2): 189–198. doi: 10.1007/s12298-013-0165-7.
    [4] POLISHCHUK O V, VODKA M V, BELYAVSKAYA N A, et al. The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves [J]. Cell Tiss Biol, 2016, 10(3): 250– 257. doi: 10.1134/S1990519X16030093.
    [5] SUN Z G, WANG L H, CHEN M M, et al. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings [J]. Ecotoxicol Environ Saf, 2012, 79: 62–68. doi: 10.1016/j. ecoenv.2011.12.004.
    [6] BOUWMAN A F, VAN VUUREN D P, DERWENT R G, et al. A global analysis of acidification and eutrophication of terrestrial ecosystems [J]. Water Air Soil Pollut, 2002, 141(1): 349–382. doi: 10. 1023/A:1021398008726.
    [7] KOVÁČIK J, KLEJDUS B, BAČKOR M, et al. Physiological responses of root-less epiphytic plants to acid rain [J]. Ecotoxicology, 2011, 20(2): 348–357. doi: 10.1007/s10646-010-0585-x.
    [8] ZHONG W M, MA Y H. Analysis and evaluation of nutritional components in Akebia trifoliate seeds [J]. SW China J Agric Sci, 2016, 29(1): 169–173. [仲伟敏, 马玉华. 三叶木通种子的营养成分分析与评价 [J]. 西南农业学报, 2016, 29(1): 169–173. doi: 10.16213/j.cnki. scjas.2016.01.033.]
    [9] JIA Y X, YANG Q X, ZENG L, et al. Triterpenes from stems of Akebia trifoliata and their antibacterial activities [J]. J Trop Subtrop Bot, 2022, 30(1): 144–150. [贾永霞, 杨秋霞, 曾雷, 等. 三叶木通藤茎的三萜成分及其抗菌活性研究 [J]. 热带亚热带植物学报, 2022, 30(1): 144–150. doi: 10.11926/jtsb.4489.]
    [10] ZHANG Y J, DANG H S, YANG L L, et al. Geographical distribution and resource survey of wild medicinal plant Akebia trifoliata subsp. trifoliata [J]. Chin Wild Plant Res, 2013, 32(3): 58–62. [张燕君, 党海山, 杨路路, 等. 药用植物三叶木通(Akebia trifoliata subsp. trifoliata)野生资源的地理分布与调查 [J]. 中国野生植物资源, 2013, 32(3): 58–62. doi: 10.3969/j.issn.1006-9690.2013.03.016.]
    [11] CAI F L, ZOU S Y, GAO P X, et al. Analysis on quality variations of Akebia trifoliata fruit at different harvesting times [J]. J Plant Res Environ, 2022, 31(1): 83–85. [蔡芳丽, 邹帅宇, 高浦新, 等. 不同采收时间三叶木通果实品质变化分析 [J]. 植物资源与环境学报, 2022, 31(1): 83–85. doi: 10.3969/j.issn.1674-7895.2022.01.10.]
    [12] YU X S, WANG X H, LI L, et al. Effects of rocky desertification habitat on growth and physiological characteristics of Akebia trifoliata [J]. Acta Ecol Sin, 2022, 42(6): 2382–2393. [于晓松, 王晓红, 李林, 等. 石漠化生境对三叶木通生长及生理特性的影响 [J]. 生态学报, 2022, 42(6): 2382–2393. doi: 10.5846/stxb202102250522.]
    [13] YU X S. Study on the adaptability of Akebia trifoliata to rocky desertification habitat [D]. Guiyang: Guizhou University, 2021. [于晓松. 三叶木通对石漠化生境的适应性研究 [D]. 贵阳: 贵州大学, 2021.]
    [14] HU W J, LIU T W, ZHU C Q, et al. Physiological, proteomic analysis, and calcium-related gene expression reveal Taxus wallichiana var. mairei adaptability to acid rain stress under various calcium levels [J]. Front Plant Sci, 2022, 13: 845107. doi: 10.3389/fpls.2022.845107.
    [15] JU S M, WANG L P, CHEN J Y. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryza sativa L. seedlings under acid rain stress [J]. Silicon, 2020, 12(3): 655–664. doi: 10.1007/s12633-019-00176-8.
    [16] WANG K, TAO X M, LIU Z, et al. Salicylic acid regulates the physiological mechanism of acid rain stress tolerance in Loropetalum chinense var. rubrum [J]. N Hort, 2023(12): 51–58. [王凯, 陶兴梅, 刘朝, 等. 水杨酸调控红花檵木耐酸雨胁迫的生理机制 [J]. 北方园艺, 2023(12): 51–58. doi: 10.11937/bfyy.20224277.]
    [17] FAN X J. Redox properties of titanium and its action on biochemical process in plants [J]. Soils Fert Sci China, 2012(5): 1–4. [范秀菊. 钛的氧化还原特性及其在植物生化过程中的作用 [J]. 中国土壤与肥料, 2012(5): 1–4.]
    [18] PAIS P. The biological importance of titanium [J]. J Plant Nutr, 1983, 6(1): 3–131. doi: 10.1080/01904168309363075.
    [19] YAN X, TU C, WANG M R. Plant nutrition of beneficial element titanium: Research progress [J]. Chin Agric Sci Bull, 2017, 33(27): 33– 36. [闫湘, 涂成, 王曼如. 有益元素钛的植物营养学研究进展 [J]. 中国农学通报, 2017, 33(27): 33–36. doi: 10.11924/j.issn.1000-6850. casb17050030.]
    [20] ZHOU X D, XU Z F, LIU W J, et al. Progress in the studies of precipitation chemistry in acid rain areas of southwest China [J]. Environ Sci, 2017, 38(10): 4438–4446. [周晓得, 徐志方, 刘文景, 等. 中国西南酸雨区降水化学特征研究进展 [J]. 环境科学, 2017, 38(10): 4438–4446. doi: 10.13227/j.hjkx.201702069.]
    [21] ZHOU Y H, LIU H, ZHANG S K, et al. Adaptation strategies of 29 species to tropical coral islands based on leaf anatomical traits [J]. J Trop Subtrop Bot, 2023, 31(6): 747–756. [周雨珩, 刘慧, 张世柯, 等. 基于叶片解剖性状探究29种植物对热带珊瑚岛的适应策略 [J]. 热带亚热带植物学报, 2023, 31(6): 747–756. doi: 10.11926/jtsb.4735.]
    [22] ZOU Q. Plant Physiology Experiment Guidance [M]. Beijing: China Agriculture Press, 2003. [邹琦. 植物生理学实验指导 [M]. 北京: 中国农业出版社, 2003.]
    [23] JI Z J, QUAN X K, WANG C K. Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes [J]. Acta Ecol Sin, 2013, 33(21): 6967–6974. [季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性 [J]. 生态学报, 2013, 33(21): 6967–6974. doi: 10.5846/ stxb201301150103.]
    [24] REN X Q, ZHANG J E, XIANG H M, et al. Research advances and prospects for effects of acid rain on aboveground physiology of plants and related alleviation countermeasures [J]. Chin J Appl Environ Biol, 2021, 27(6): 1716–1724. [任晓巧, 章家恩, 向慧敏, 等. 酸雨对植物地上部生理生态的影响研究进展与展望 [J]. 应用与环境生物学报, 2021, 27(6): 1716–1724. doi: 10.19675/j.cnki.1006-687x.2020.07054.]
    [25] FENG Z W, ZHANG J W, CHEN C Y, et al. Injuries to tree leaves by simulated acid rain and resistant nature of the trees [J]. Environ Sci, 1988, 9(5): 30–33. [冯宗炜, 张家武, 陈楚莹, 等. 模拟酸雨对树木叶片的伤害和树木抗性的研究 [J]. 环境科学, 1988, 9(5): 30–33. doi: 10.13227/j.hjkx.1988.05.008.]
    [26] LIU X Y, ZHANG X W, DAI H M, et al. Analysis on the growth effect of nano titanium dioxide on Lactuca sativa [J]. J Trop Subtrop Bot, 2023, 31(5): 679–685. [刘晓宇, 张雪薇, 戴昊鸣, 等. 纳米二氧化钛对生菜的生长效应分析 [J]. 热带亚热带植物学报, 2023, 31(5): 679–685. doi: 10.11926/jtsb.4685.]
    [27] LI R Q, WANG Y X, SUN Y L, et al. Effects of salt stress on leaf morphology and anatomical structure of Bromus inermis seedlings [J]. Acta Agrest Sin, 2022, 30(6): 1450–1459. [李瑞强, 王玉祥, 孙玉兰, 等. 盐胁迫对无芒雀麦幼苗叶片形态及解剖结构的影响 [J]. 草地学报, 2022, 30(6): 1450–1459. doi: 10.11733/j.issn.1007-0435.2022.06.016.]
    [28] WANG L Y, FENG J X, CHEN Z C, et al. Differences in physiological characteristics of Populus×euramericana varieties ‘Purui’ and ‘107’ under simulated acid rain stresses [J]. Plant Sci J, 2018, 36(4): 586–594. [王璐怡, 冯锦霞, 陈志成, 等. 杨品种‘普瑞’和‘107’对模拟酸雨胁迫的生理响应 [J]. 植物科学学报, 2018, 36(4): 586–594. doi: 10. 11913/PSJ.2095-0837.2018.40586.]
    [29] LI F L, BAO W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change [J]. Chin Bull Bot, 2005, 22(S1): 118–127. [李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应 [J]. 植物学通报, 2005, 22(S1): 118–127.]
    [30] DONG X J, ZHANG X S. Some observations of the adaptations of sandy shrubs to the arid environment in the Mu Us sandland: Leaf water relations and anatomic features [J]. J Arid Environ, 2001, 48(1): 41–48. doi: 10.1006/jare.2000.0700.
    [31] WANG Y, LIANG Z S, GONG C M, et al. Effect of drought on leaf anatomical characteristics of four Artemisia species in the Loess Plateau [J]. Acta Ecol Sin, 2014, 34(16): 4535–4548. [王勇, 梁宗锁, 龚春梅, 等. 干旱胁迫对黄土高原4种蒿属植物叶形态解剖学特征的影响 [J]. 生态学报, 2014, 34(16): 4535–4548. doi: 10.5846/stxb 201306301802.]
    [32] WANG X L, MA J. A study on leaf-structure and the diversity of xerophytes ecology adaptation [J]. Acta Ecol Sin, 1999, 19(6): 787– 792. [王勋陵, 马骥. 从旱生植物叶结构探讨其生态适应的多样性 [J]. 生态学报, 1999, 19(6): 787–792. doi: 10.3321/j.issn:1000-0933. 1999.06.004.]
    [33] QIU J, GAO C, LUO H F. Leaf anatomical structure and drought resistance evaluation of ancient tea trees in karst area of northwest Guizhou [J]. Acta Bot Boreali-Occid Sin, 2023, 43(7): 1170–1184. [仇杰, 高超, 罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价 [J]. 西北植物学报, 2023, 43(7): 1170–1184. doi: 10.7606/j. issn.1000-4025.2023.07.1170.]
    [34] ZHONG J W, SHAN X R, ZHANG J E, et al. Study on the effects of acid rain on the photosynthetic and antioxidant systems and yield of lettuce [J]. Ecol Environ Sci, 2021, 30(3): 532–540. [钟嘉文, 单晓冉, 章家恩, 等. 酸雨对生菜的光合、抗氧化系统和产量的影响研究 [J]. 生态环境学报, 2021, 30(3): 532–540. doi: 10.16258/j.cnki.1674-5906. 2021.03.011.]
    [35] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 2010, 48(12): 909–930. doi: 10.1016/j.plaphy.2010.08.016.
    [36] BHARTI A S, SHARMA S, SHUKLA N, et al. Steady state and time resolved laser-induced fluorescence of garlic plants treated with titanium dioxide nanoparticles [J]. Spectrosc Lett, 2018, 51(1): 45–54. doi: 10.1080/00387010.2017.1417871.
    [37] KARAMIAN R, GHASEMLOU F, AMIRI H. Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles [J]. Plant Biosyst-Int J Deal All Aspects Plant Biol, 2020, 154(3): 277–287. doi: 10.1080/11263504.2019.1591535.
    [38] LI L X, TAO C Z, LIN J Q, et al. Response of needle anatomical structure of different Chinese fir clones to atmospheric warming [J]. Acta Ecol Sin, 2022, 42(20): 8385–8397. [李林鑫, 陶长铸, 林景泉, 等. 不同杉木无性系叶片解剖结构对大气增温的响应 [J]. 生态学报, 2022, 42(20):8385–8397. doi: 10.5846/stxb202109152590.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王凯,陶兴梅,李小琴,谯祖勤,刘朝,张永福.三叶木通叶片解剖结构和生理特征对酸雨胁迫的响应和钛的缓解效应[J].热带亚热带植物学报,2025,33(1):15~24

Copy
Share
Article Metrics
  • Abstract:43
  • PDF: 92
  • HTML: 65
  • Cited by: 0
History
  • Received:October 05,2023
  • Revised:December 18,2023
  • Online: February 18,2025
Article QR Code