Relationship Between Species Diversity and Soil Physicochemical Properties in Different Mixed Forests of Acacia confusa and Pinus thunbergii on Pingtan Island
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Understory plant diversity and soil physicochemical properties are the key indicators of soil and water conservation stability and growth ability. Five typical stand types on Pingtan Island were selected, including Acacia confusa forest (I), Pinus thunbergii forest (II), A. confusa + Casuarina equisetifolia forest (III), P. thunbergii + A. confusa forest (IV) and P. thunbergii + Eurya emarginata forest (V), the differences of understory plant diversity and soil physicochemical properties in different stand types were analyzed, and explored their relationships through redundancy analysis (RDA). The results showed that the mixed forest of P. thunbergii + A. confusa was more beneficial to enrich the species diversity in the understory, while the community structure of A. confuse + C. equisetifolia forest was simple with low species diversity. The soil physicochemical properties of different mixed forests were different. Compared with pure forest, the mixed planting of tree species was beneficial to increase the total potassium content of soil, and A. confuse + C. equisetifolia and P. thunbergii + E. emarginata forest were beneficial to enhance soil organic matter content, total nitrogen, alkali-hydrolytic nitrogen and available phosphorus. Soil total K and water soluble salt had the greatest influence on species diversity in understory, and total K was negatively correlated with species diversity index in shrub layer and herbaceous layer. The total water soluble salt was positively correlated with the species diversity index of shrub layer and negatively correlated with the species diversity index of herbaceous layer. Therefore, in order to improve the species diversity of the understory, the mixed planting of P. thunbergii + A. confusa could be considered. To improve soil fertility, mixed planting of A. confusa + Casuarina equisetifolia, P. thunbergii + A. confuse could be considered. At the same time, tree species coordination was carried out through artificial tending, thinning and replanting, so as to reduce allelopathy of Casuarina equisetifolia, control total potassium and water soluble salt content in soil for promote long-term stable development of community.

    Reference
    [1] ZHOU R H, SU T C, YU J, et al. Species diversity and soil physicochemical properties of different communities in Bifengxia evergreen broad-leaved forest [J]. Chin J Ecol, 2022, 41(1): 1–8. [周润惠, 苏天成, 喻静, 等. 碧峰峡常绿阔叶林不同群落物种多样性和土壤理化性质[J]. 生态学杂志, 2022, 41(1): 1–8. doi: 10.13292/j.1000-4890. 202201.019.]
    [2] LI K. The influence mechanism of Robinia pseudoacacia plantation conversion model on its community structure and soil properties [D]. Tai’an: Shandong Agricultural University, 2019. [李坤. 刺槐人工林转换模式对群落结构和土壤性质的影响机制[D]. 泰安: 山东农业大学, 2019. doi: 10.27277/d.cnki.gsdnu.2019.000051.]
    [3] HU L D, ZHOU H J, HUANG Y Z, et al. A study on plant species diversity and soil carbon and nitrogen in different Cunninghamia lanceolatastand types [J]. Ecol Environ Sci, 2022, 31(3): 451–459. [胡靓达, 周海菊, 黄永珍, 等. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451–459. doi: 10.16258/j.cnki.1674-5906.2022.03.003.]
    [4] GUAN S M, ZHENG X X, WU Y H, et al. Species diversity and functional diversity of primary vegetation on the coast of Pingtan Island [J]. J Southwest For Univ, 2021, 41(6): 71–78. [管诗敏, 郑心炫, 吴雅华, 等. 平潭岛海岸自然植被物种和功能多样性特征[J]. 西南林业大学学报, 2021, 41(6): 71–78. doi: 10.11929/j.swfu. 202101048.]
    [5] LAI M Y, XIAO J H, LI M, et al. Carbon storage and its influencing factors in tree layer of plant community in Pingtan Island [J]. J Shandong For Sci Technol, 2022, 52(6): 19–26. [赖敏英, 肖集泓, 李媚, 等. 平潭岛植物群落乔木层碳储量及影响因素研究[J]. 山东林业科技, 2022, 52(6): 19–26. doi: 10.3969/j.issn.1002-2724.2022.06.004.]
    [6] MA X D, JIANG D G, LIU Z L, et al. Niche of dominant plant populations of Acacia confusa community in Pingtan Island [J]. Chin J Trop Crops, 2022, 43(12): 2614–2625. [马晓迪, 姜德刚, 刘子琳, 等. 平潭岛台湾相思群落优势种群生态位研究[J]. 热带作物学报, 2022, 43(12): 2614–2625. doi: 10.3969/j.issn.1000-2561.2022.12.024.]
    [7] YANG X J, DU J H, ZHANG C J, et al. Diurnal variations of water potential and its influencing factors in typical plant communities on coppice dunes of Pingtan Island [J]. Acta Ecol Sin, 2016, 36(9): 2614– 2619. [杨显基, 杜建会, 张楚杰, 等. 平潭岛典型海岸草丛沙堆植物群落水势日变化特征及其影响因素[J]. 生态学报, 2016, 36(09): 2614–2619. doi: 10.5846/stxb201411172277.]
    [8] ZHANG Q, LIU Y, CHEN Y, et al. Effects of spatial characteristics on plant diversity on uninhabited Islands in Pingtan, Fujian [J]. Acta Bot Boreali-Occid Sin, 2023, 43(3): 503–511. [张群, 刘阳, 陈颖, 等. 福建平潭无居民岛屿空间特征对植物多样性的影响[J]. 西北植物学报, 2023, 43(3): 503–511. doi: 10.7606/j.issn.1000-4025.2023.03.0503.]
    [9] ZHANG Z K, ZHENG X X, LIN H Z, et al. Summary of changes in plant functional traits and environmental factors in different successional stages of island plants [J]. Acta Ecol Sin, 2019, 39(10): 3749–3758. [张增可, 郑心炫, 林华贞, 等. 海岛植物不同演替阶段植物功能性状与环境因子的变化规律[J]. 生态学报, 2019, 39(10): 3749–3758. doi: 10.5846/stxb201807051468.]
    [10] FENG J Y, HUANG C M, SHI X Y, et al. Changes of soil physical and chemical properties of forest land in the early stage of Eucalyptus and Erythrophleum fordii mixed forest [J]. Res Soil Water Conserv, 2017, 24(3): 295–300. [冯娇银, 黄昌谋, 施喜元, 等. 桉树与格木混交初期土壤理化性质的变化[J]. 水土保持研究, 2017, 24(3): 295–300. doi: 10.13869/j.cnki.rswc.2017.03.051.]
    [11] WANG J R, SHI W K, WU H F, et al. Characteristics of leaf functional traits of typical coniferous plantations in northern Shanxi and their relationship with soil factors [J]. Acta Bot Boreali-Occid Sin, 2023, 43(5): 835–845. [王洁茹, 石文凯, 吴会峰, 等. 晋北典型针叶人工林叶功能性状特征及其与土壤因子的关系[J]. 西北植物学报, 2023, 43(5): 835–845. doi: 10.7606/j.issn.1000-4025.2023.05.0835.]
    [12] MO Y F, WANG J Y, CHEN L, et al. Effects of different mixed models on growth and plant diversity in Eucalyptus plantations [J]. SW China J Agric Sci, 2022, 35(5): 1185–1192. [莫雅芳, 王家妍, 陈亮, 等. 不同混交模式对桉树人工林生长及植物多样性的影响[J]. 西南农业学报, 2022, 35(5): 1185–1192. doi: 10.16213/j.cnki.scjas.2022.5.026.]
    [13] SUN Y K, TANG J M, WANG Y. Soil physical-chemical properties and comprehensive evaluation of Larix kaempferi plantations under differrent management models [J]. J NE For Univ, 2022, 50(6): 70–75. [孙拥康, 汤景明, 王怡. 不同经营模式日本落叶松人工林土壤理化性质及综合评价[J]. 东北林业大学学报, 2022, 50(6): 70–75. doi: 10. 13759/j.cnki.dlxb.2022.06.011.]
    [14] DU M Y, ZHANG L J, PEI S X, et al. Soft physical characteristics in different types of Pinus tabuliformis mixed forest [J]. Chin J Ecol, 2020, 39(11): 3588–3595. [杜满义, 张连金, 裴顺祥, 等. 不同类型油松混交林土壤物理特性[J]. 生态学杂志, 2020, 39(11): 3588– 3595. doi: 10.13292/j.1000-4890.202011.021.]
    [15] CAI X H, LIAO K. Analysis of climatic characteristics for gale in Pingtan of Fujian [J]. J Minjiang Univ, 2011, 32(5): 130–133. [蔡晓禾, 廖廓. 福建平潭大风气候特征分析[J]. 闽江学院学报, 2011, 32(5): 130–133. doi: 10.3969/j.issn.1009-7821.2011.05.031.]
    [16] ZHAO L H. Evaluation of island city’s ecological vulnerability based on GIS and RS: A case study of Pingtan Island [D]. Fuzhou: Fuzhou University, 2018. [赵林洪. 基于GIS和RS的海岛型城市生态脆弱性评价——以平潭岛为例[D]. 福州: 福州大学, 2018.]
    [17] LU R K. Methods for Agrochemical Analysis of Soils [M]. Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.]
    [18] SONG Y C. Vegetation Ecology [M]. 2nd ed. Beijing: Higher Education Press, 2017: 44–84. [宋永昌. 植被生态学[M]. 第2版. 北京: 高等教育出版社, 2017: 44–84.]
    [19] ZHANG J T. Quantitative Ecology [M]. 2nd ed. Beijing: Science Press, 2011: 20–123. [张金屯. 数量生态学[M]. 第2版. 北京: 科学出版社, 2011: 20–123.]
    [20] XIAO J H, ZHANG L T, WANG C X, et al. Minimum sample area of three forest communities in Langqi Island [J]. Plant Sci J, 2023, 41(3): 279–291. [肖集泓, 张琳婷, 王春晓, 等. 琅岐岛3类森林群落的最小取样面积研究[J]. 植物科学学报, 2023, 41(3): 279–291. doi: 10. 11913/PSJ.2095-0837.22185.]
    [21] REN Y W, ZHONG X Y, YI H P, et al. Effects of different stand types on leaf functional traits, understory species diversity and soil nutrients [J]. For Res, 2023, 36(2): 161–168. [任奕炜, 钟小瑛, 衣华鹏, 等. 不同林分类型对叶功能性状、林下物种多样性及土壤养分的影响[J]. 林业科学研究, 2023, 36(2): 161–168. doi: 10.12403/j.1001-1498. 20220492.]
    [22] KNAAPEN J P, SCHEFFER M, HARMS B. Estimating habitat isolation in landscape planning [J]. Landsc Urban Plan, 1992, 23(1): 1–16. doi: 10.1016/0169-2046(92)90060-D.
    [23] SHEN G F. Silvicultur [M]. Beijing: China Forestry Press, 2001. [沈国舫. 森林培育学[M]. 北京: 中国林业出版社, 2001.]
    [24] JIN X W, CHEN C, YUAN F, et al. Effects of mixed-planting pattern on photosynthetic characteristics and growth of Casuarina equisetifolia and Acacia confusa seedlings [J]. J NW For Univ, 2023, 38(4): 127– 133. [金学伟, 陈灿, 袁锋, 等. 木麻黄和台湾相思苗木混植对生长和营养含量的影响[J]. 西北林学院学报, 2023, 38(4): 127–133. doi: 10.3969/j.issn.1001-7461.2023.04.16.]
    [25] LI J, LIU Y, HONG T, et al. Effect of two allelochemicals on reactive oxygen content and protective enzyme activity in branchlet of Casuarina equisetifolia seedling [J]. J Plant Res Environ, 2013, 22(2): 30–38. [李键, 刘奕, 洪滔, 等. 2种化感成分对木麻黄幼苗小枝活性氧含量和保护酶活性的影响[J]. 植物资源与环境学报, 2013, 22(2): 30–38. doi: 10.3969/j.issn.1674-7895.2013.02.04.]
    [26] ZHANG Z K, WU Y H, HUANG L J, et al. C, N and P stoichiometry of soil and plant in different forest successional stages in island [J]. Acta Bot Boreali-Occid Sin, 2019, 39(5): 925–934. [张增可, 吴雅华, 黄柳菁, 等. 海岛森林不同演替阶段土壤和植物的碳、氮、磷化学计量特征[J]. 西北植物学报, 2019, 39(5): 925–934. doi: 10.7606/j. issn.1000-4025.2019.05.0925.]
    [27] LI Y Q. Investigation of plant diversity under three different plantations in Wenchang Hainan [J]. Trop For, 2020, 48(2): 17–20. [李燕清. 海南文昌3种主要人工林下植物多样性调查[J]. 热带林业, 2020, 48(2): 17–20. doi: 10.3969/j.issn.1672-0938.2020.02.004.]
    [28] SHI C K. Mixed afforestation of Eucalyptus and Casuarina equisetifolia in coastal hilly and mountainous areas of southern Fujian [J]. Anhui Agric Sci Bull, 2011, 17(17): 140–141. [施成坤. 闽南沿海丘陵山地桉树木麻黄混交造林研究[J]. 安徽农学通报, 2011, 17(17): 140–141. doi: 10.16377/j.cnki.issn1007-7731.2011.17.091.]
    [29] WANG X Y, XUE Y, SU S F, et al. Effects of pure and mixed plantations of Casuarina equisetifolia on soil profile physico-chemical properties [J]. Guihaia, 2022, 42(8): 1315–1324. [王小燕, 薛杨, 宿少锋, 等. 木麻黄纯林及其混交林对土壤剖面理化性质的影响[J]. 广西植物, 2022, 42(8): 1315–1324. doi: 10.11931/guihaia.gxzw202012048.]
    [30] CAO Y Q, ZHANG Z F, JIANG S S, et al. Growth promoting effect of plant growth-promoting rhizobacteria on tree seedlings suitable for afforestation in rocky desertified region [J]. Guihaia, 2021, 41(5): 738– 745. [曹彦强, 张中峰, 蒋士宋, 等. 根际促生菌对石漠化地区造林苗木的促生效应[J]. 广西植物, 2021, 41(5): 738–745. doi: 10. 11931/guihaia.gxzw201911003.]
    [31] LI L. Study on soil ecological effect of differential land use in red soil hilly region of southern China [D]. Beijing: Beijing Forestry University, 2010. [李灵. 南方红壤丘陵区不同土地利用的土壤生态效应研究[D]. 北京: 北京林业大学, 2010.]
    [32] WANG X Y, WANG Q C. Effects of the close-to-nature cultivation of Larix olgensis and Fraxinus mandshurica on the soil physiochemical properties [J]. Sci Silv Sin, 2008, 44(12): 21–27. [王新宇, 王庆成. 水曲柳落叶松人工林近自然化培育对林地土壤理化性质的影响[J]. 林业科学, 2008, 44(12): 21–27. doi: 10.3321/j.issn:1001-7488.2008. 12.004.]
    [33] LI Z A, ZOU B, DING Y Z, et al. Key factors of forest litter decomposition and research progress [J]. Chin J Ecol, 2004, 23(6): 77–83. [李志安, 邹碧, 丁永祯, 等. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 2004, 23(6): 77–83.]
    [34] WANG H. Phoshate adsorption on iron oxides and iron oxides-humic acid complexes [D]. Wuhan: Huazhong Agricultural University, 2015. [王慧. 铁氧化物及其胡敏酸复合体对磷酸盐的吸附研究[D]. 武汉: 华中农业大学, 2015.]
    [35] WANG X, HU Y K, ADILLA R, et al. Effects of soil salt on the niche of main plant species in alpine meadow [J]. Chin J Appl Ecol, 2008, 19(7): 1448–1454. [王鑫, 胡玉昆, 热合木都拉·阿迪拉, 等. 土壤盐分对高寒草甸主要植物生态位的影响[J]. 应用生态学报, 2008, 19(7): 1448–1454.]
    [36] HUANG C Y, XU J M. Soil Science [M]. Beijing: China Agriculture Press, 2000. [黄昌勇, 徐建民. 土壤学[M]. 北京: 中国农业出版社, 2000.]
    [37] ZHANG J Y. The characteristics of plant community and its response to environment in the northern islands of South China Sea [D]. Changsha: Hunan Agricultural University, 2020. [张家涌. 中国南海北部海岛植物群落特征及其对环境的响应[D]. 长沙: 湖南农业大学, 2020. doi: 10.27136/d.cnki.ghunu.2020.000442.]
    [38] CUI Q F, CHENG Q, YANG X T. Soil ecological stoichiometry characteristics of the Platycladus orientalis forest in the south Taihang Mountain [J]. J W China For Sci, 2020, 49(1): 20–24. [崔秋芳, 程倩, 杨喜田. 南太行山区侧柏纯林及其混交林土壤生态化学计量特征[J]. 西部林业科学, 2020, 49(1): 20–24. doi: 10.16473/j.cnki.xblykx 1972.2020.01.004.]
    [39] WEI Y Y, ZHANG K D, XU L, et al. Relationship between plant, and soil pH and nutrients in non-residential islands [J]. J NE For Univ, 2019, 47(11): 81–85. [魏艳艳, 张凯迪, 徐良, 等. 浙江省无居民海岛植物与土壤pH值和养分的关系[J]. 东北林业大学学报, 2019, 47(11): 81–85. doi: 10.13759/j.cnki.dlxb.2019.11.016.]
    [40] YAN W M, SUN B, PEI N C, et al. Correlation analyses on plant diversity and soil physical-chemical properties between evergreen broadleaved plantations and natural secondary forests in north Guangdong, China [J]. Ecol Environ Sci, 28(5): 898–907. [闫玮明, 孙冰, 裴男才, 等. 粤北阔叶人工林和次生林植物多样性与土壤理化性质相关性研究[J]. 生态环境学报, 2019, 28(5): 898–907. doi: 10.16258/j.cnki. 1674-5906.2019.05.006.]
    [41] HE Y Q, ZENG J Y, CHEN G J, et al. Characteristics and species diversity of typical forest community in Dalian Island of Pingtan, Fujian, China [J]. Chin Appl Environ Biol, 2022, 28(3): 759–769. [何雅琴, 曾纪毅, 陈国杰, 等. 福建平潭大练岛典型森林群落特征及物种多样性[J]. 应用与环境生物学报, 2022, 28(3): 759–769. doi: 10.19675/j.cnki.1006-687x.2020.12002.]
    [42] XU Y, DENG L. Relationships of fine root morphology and soil physicochemical properties in different mingling intensity of Picea crassifolia in Qilian Mountains [J]. Res Soil Water Conserv, 2023, 30(3): 181–187. [徐莹, 邓磊. 祁连山不同混交度青海云杉林细根形态特征及与土壤理化性质的关系[J]. 水土保持研究, 2023, 30(3): 181–187. doi: 10.13869/j.cnki.rswc.2023.03.029.]
    [43] LIU J H, LI X Y, WANG Y L, et al. Effects of different forest ages of Xanthoceras sorbifolia plantations on soil nutrients in sandy wasteland [J]. For Sci Technol, 2021(2): 55–57. [刘建海, 李小燕, 王艺林, 等. 不同林龄文冠果人工林对沙荒地土壤养分的影响[J]. 林业科技通讯, 2021(2): 55–57. doi: 10.13456/j.cnki.lykt.2020.03.10.0005.]
    [44] YIN D J, ZHANG J, JING R, et al. Relationships between plant community and soil chemical factors in coastal saline area of Shandong, China [J]. Chin J Appl Ecol, 2018, 29(11): 3521–3529. [尹德洁, 张洁, 荆瑞, 等. 山东滨海盐渍区植物群落与土壤化学因子的关系[J]. 应用生态学报, 2018, 29(11): 3521–3529. doi: 10.13287/j.1001-9332. 201811.007.]
    [45] HE Q, CUI B S, ZHAO X S, et al. Relationships between salt marsh vegetation distribution/diversity and soil chemical factors in the Yellow River Estuary, China [J]. Acta Ecol Sin, 2009, 29(2): 676–687. [贺强, 崔保山, 赵欣胜, 等. 黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系[J]. 生态学报, 2009, 29(2): 676–687. doi: 10.3321/ j.issn:1000-0933.2009.02.016.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

温清燕,肖集泓,黄阿青,黄运腾,邓清雅,曹晟,邓传远.平潭岛台湾相思与黑松不同混交林林下物种多样性与土壤理化性质的关系[J].热带亚热带植物学报,2024,32(6):715~724

Copy
Share
Article Metrics
  • Abstract:56
  • PDF: 183
  • HTML: 88
  • Cited by: 0
History
  • Received:September 22,2023
  • Revised:December 03,2023
  • Online: December 12,2024
Article QR Code