Effect of Warming on Dissolved Organic Matter in Litter of Subtropical Evergreen Broad-leaved Forest
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the effect of warming on litter decomposition, the litter collected in subtropical evergreen broad-leaved forest was distributed in control and warming (+4 ℃) plots, respectively. The changes in the quantity and spectral characteristics of dissolved organic matter during litter decomposition under warming were studied. The results showed that the mass residual rate of litter decreased significantly with decomposition process, rapidly decreased by 20.08% to 23.32% in 0-60 days, and slowly decreased by 6.35% to 10.98% in 60-210 days. Along decomposition process, the dissolved organic carbon content of litter source showed a decreasing trend of first fast and then slow, and the overall decrease was 94.15%. The content of dissolved organic nitrogen fluctuating decreased by 81.82% overall. The spectral characteristics of dissolved organic matter (SUVA254, SUVA260, SUVA280 and SUVA370) showed an increase-decrease-increase tendency. The warming did not significantly affect the mass residual rate of litter and the spectral characteristics of dissolved organic matter, but the contents of dissolved organic carbon and organic nitrogen decreased by 16.72% and 25.10%. Therefore, the decomposition of litters decreased the mass residual rate of litters and the contents of dissolved organic carbon and organic nitrogen, and changed the spectral characteristics of dissolved organic matter. Although warming decreased the contents of dissolved organic carbon and organic nitrogen in litters, it did not significantly change the mass residual rate and spectral characteristics of dissolved organic matter in litters.

    Reference
    [1] HOUGHTON R A. Balancing the global carbon budget [J]. Annu Rev Earth Planet Sci, 2007, 35: 313-347. doi: 10.1146/annurev.earth.35.031306.140057.
    [2] BONAN G B, HARTMAN M D, PARTON W J, et al. Evaluating litter decomposition in earth system models with long-term litterbag experi- ments: An example using the community land model version 4(CLM4) [J]. Glob Change Biol, 2013, 19(3): 957-974. doi: 10.1111/gcb.12031.
    [3] XU J W, DING Y D, LI S L, et al. Amount and biodegradation of dissolved organic matter leached from tree branches and roots in sub- tropical plantations of China [J]. For Ecol Manage, 2021, 484: 118944. doi: 10.1016/j.foreco.2021.118944.
    [4] HENSGENS G, LAUDON H, PEICHL M, et al. The role of the under- story in litter DOC and nutrient leaching in boreal forests [J]. Biogeo- chemistry, 2020, 149: 87-103. doi: 10.1007/s10533-020-00668-5.
    [5] CAI A D, LIANG G P, YANG W, et al. Patterns and driving factors of litter decomposition across Chinese terrestrial ecosystems [J]. J Cleaner Prod, 2021, 278: 123964. doi: 10.1016/j.jclepro.2020.123964.
    [6] GARCÍA-PALACIOS P, MAESTRE F T, KATTGE J, et al. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes [J]. Ecol Lett, 2013, 16(8): 1045-1053. doi: 10.1111/ele.12137.
    [7] AERTS R. The freezer defrosting: Global warming and litter decom- position rates in cold biomes [J]. J Ecol, 2006, 94(4): 713-724. doi: 10. 1111/j.1365-2745.2006.01142.x.
    [8] IPCC. Climate change 2021: The physical science basis [M]//Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. doi: 10.1017/9781009157896.
    [9] LIU J X, LIU S G, LI Y Y, et al. Warming effects on the decomposition of two litter species in model subtropical forests [J]. Plant Soil, 2017, 420(1/2): 277-287. doi: 10.1007/s11104-017-3392-9.
    [10] BOTHWELL L D, SELMANTS P C, GIARDINA C P, et al. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests [J]. PeerJ, 2014, 2: e685. doi: 10. 7717/peerj.685.
    [11] XU Z F, PU X Z, YIN H J, et al. Warming effects on the early decom- position of three litter types, eastern Xizang Plateau, China [J]. Eur J Soil Sci, 2012, 63(3): 360-367. doi: 10.1111/j.1365-2389.2012.01449.x.
    [12] YE C L, WANG Y, YAN X B, et al. Predominant role of air warming in regulating litter decomposition in a Xizang alpine meadow: A multi- factor global change experiment [J]. Soil Biol Biochem, 2022, 167: 108588. doi: 10.1016/j.soilbio.2022.108588.
    [13] PRIETO I, ALMAGRO M, BASTIDA F, et al. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition [J]. J Ecol, 2019, 107(5): 2364-2382. doi: 10.1111/1365-2745.13168.
    [14] CHUCKRAN P F, REIBOLD R, THROOP H L, et al. Multiple mechanisms determine the effect of warming on plant litter decompo- sition in a dryland [J]. Soil Biol Biochem, 2020, 145: 107799. doi: 10. 1016/j.soilbio.2020.107799.
    [15] LI A G, FAN Y X, CHEN S L, et al. Soil warming did not enhance leaf litter decomposition in two subtropical forests [J]. Soil Biol Biochem, 2022, 170: 108716. doi: 10.1016/j.soilbio.2022.108716.
    [16] DON A, KALBITZ K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages [J]. Soil Biol Biochem, 2005, 37(12): 2171-2179. doi: 10.1016/j.soilbio.2005.03.019.
    [17] YANG Y S, GUO J F, CHEN G S, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropi- cal China [J]. Plant Soil, 2009, 323(1/2): 153-162. doi: 10.1007/s11104- 009-9921-4.
    [18] CARTER H T, TIPPING E, KOPRIVNJAK J F, et al. Freshwater DOM quantity and quality from a two-component model of UV absorbance [J]. Water Res, 2012, 46(14): 4532-4542. doi: 10.1016/j.watres.2012. 05.021.
    [19] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 2002, 34(9): 1309- 1315. doi: 10.1016/S0038-0717(02)00074-3.
    [20] WEISHAAR J L, AIKEN G R, BERGAMASCHI B, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environ Sci Technol, 2003, 37(20): 4702-4708. doi: 10.1021/es030360x.
    [21] YOUNG K C, DOCHERTY K M, MAURICE P A, et al. Degradation of surface-water dissolved organic matter: Influences of DOM chemi- cal characteristics and microbial populations [J]. Hydrobiologia, 2005, 539(1): 1-11. doi: 10.1007/s10750-004-3079-0.
    [22] CARTER H T, TIPPING E, KOPRIVNJAK J F, et al. Freshwater DOM quantity and quality from a two-component model of UV absorbance [J]. Water Res, 2012, 46(14): 4532-4542. doi: 10.1016/j.watres.2012.05.021.
    [23] OLSON J S. Energy storage and the balance of producers and decom- posers in ecological systems [J]. Ecology, 1963, 44(2): 323-331. doi: 10.2307/1932179.
    [24] LIU X F, CHEN S D, LI X J, et al. Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtro- pical natural forest over 450 days [J]. Geoderma, 2022, 427: 116139. doi: 10.1016/j.geoderma.2022.116139.
    [25] MAGILL A H, ABER J D. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition [J]. Soil Biol Biochem, 2000, 32(5): 603-613. doi: 10.1016/S0038-0717(99) 00187-X.
    [26] WANG X E, XUE L, XIE T F. A review on litter decomposition [J]. Chin J Soil Sci, 2009, 40(6): 1473-1478. [王相娥, 薛立, 谢腾芳. 凋落物分解研究综述[J]. 土壤通报, 2009, 40(6): 1473-1478. doi: 10. 19336/j.cnki.trtb.2009.06.052.]
    [27] MAIE N, JAFFÉ R, MIYOSHI T, et al. Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland [J]. Biogeochemistry, 2006, 78(3): 285-314. doi: 10.1007/s10533-005-4329-6.
    [28] Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation and Carbon Sequestration [M]. Heidelberg, Berlin: Springer Verlag, 2003: 1-286.
    [29] GUO J F, YANG Y S, CHEN G S, et al. A review on litter decom- position in forest ecosystem [J]. Sci Silv Sin, 2006, 42(4): 93-100. [郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4): 93-100. doi: 10.3321/j.issn:1001-7488.2006.04.017.]
    [30] ZHANG Y H, CHEN J, XU C, et al. Effects of warming on quantity and structure of litter-derived dissolved organic matter in subtropical natural Castanopsis kawakamii forests [J]. Chin J Appl Ecol, 2023, 34(4): 946-954. [张宇辉, 陈娟, 胥超, 等. 增温对亚热带格氏栲天然林凋落物可溶性有机质数量和结构的影响[J]. 应用生态学报, 2023, 34(4): 946-954. doi: 10.13287/j.1001-9332.202304.006.]
    [31] Song H W. Effects of soil warming on litter decomposition in subtro- pical forests and its microbial mechanism [D]. Fuzhou: Fujian Normal University, 2022. [宋豪威. 土壤增温对亚热带森林凋落物分解的影响及其微生物机制[D]. 福州: 福建师范大学, 2021. doi: 10.27019/d.cnki.gfjsu.2021.001196.]
    [32] MOORHEAD D L, LASHERMES G, SINSABAUGH R L, et al. Cal- culating co-metabolic costs of lignin decay and their impacts on carbon use efficiency [J]. Soil Biol Biochem, 2013, 66: 17-19. doi: 10.1016/j. soilbio.2013.06.016.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王云,张宇辉,冉佳鑫,毛超,熊德成,陈仕东,杨智杰.增温对亚热带常绿阔叶林凋落物溶解性有机质的影响[J].热带亚热带植物学报,2024,32(5):611~619

Copy
Share
Article Metrics
  • Abstract:111
  • PDF: 2194
  • HTML: 122
  • Cited by: 0
History
  • Received:August 15,2023
  • Revised:September 26,2023
  • Online: September 29,2024
Article QR Code