Effect of Phosphorus on Cluster Bud Growth in Proliferating Seedlings of Acacia melanoxylon
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To understand the effect of phosphorus on the induction and growth of cluster buds in the proliferating seedlings of Acacia melanoxylon, the tissue-cultured seedlings of clone SR17 as materials was inoculated proliferation medium containing 0.9, 1.2, 1.6, 2.0, 2.4, and 2.7 mmol/L KH2PO4, respectively, and the growth and development indexes of cluster buds were investigated after for 1 and 2 cycles of subgeneration, respectively. The results showed that 2.0–2.7 mmol/L KH2PO4 promoted the rapid growth of height, number of cluster bud and base callus of proliferating seedlings, among which 2.4 mmol/L KH2PO4 had the best effect, and the accumulation of biomass and chlorophyll content was higher. With the enhance of phosphorus content in the medium, phosphorus and potassium contents in the cluster buds significantly increased, while nitrogen content had no significant change. Pearson correlation analysis revealed that the phosphorus level had significantly positive correlation with height, number, base callus, fresh weight, dry weight, tissue water content, and contents of total chlorophyll, chlorophyll a, chlorophyll b, phosphorus, potassium of bud in 1 and 2 cycles of subgeneration. Therefore, phosphorus plays an essential regulatory role in the growth and development of cluster buds of A. melanoxylon.

    Reference
    [1] WHITE P J, HAMMOND J P. Phosphorus nutrition of terrestrial plants [M]//The Ecophysiology of Plant-Phosphorus Interactions. Dordrecht: Springer, 2008: 51–81. doi: 10.1007/978-1-4020-8435-5_4.
    [2] HAWKESFORD M J, CAKMAK I, COSKUN D, et al. Functions of macronutrients [M]//RENGEL Z, CAKMAK I, WHITE P J. Marschner’s Mineral Nutrition of Plants. 4th ed. London: Academic Press, 2023: 201–281. doi: 10.1016/B978-0-12-819773-8.00019-8.
    [3] RAGHOTHAMA K G. Phosphate acquisition [J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50(1): 665–693. doi: 10.1146/annurev. arplant.50.1.665.
    [4] HE B Y, LIU S N, YANG M, et al. Effects of low phosphorus stress on physiological characteristics of Eucalyptus coleziana seedling leaves [J]. SW China J Agric Sci, 2022, 35(2): 418–424. [何榜眼, 刘世男, 杨梅, 等. 低磷胁迫对大花序桉幼苗叶片生理指标的影响[J]. 西南农业学报, 2022, 35(2): 418–424. doi: 10.16213/j.cnki.scjas.2022. 2.023.]
    [5] CHEN H Y, QUAN W X, LIU H Y, et al. Effects of Suillus luteus and S. bovinus on the physiological response and nutrient absorption of Pinus massoniana seedlings under phosphorus deficiency [J]. Plant Soil, 2022, 471(1/2): 577–590. doi: 10.1007/s11104-021-05211-5.
    [6] YANG Q C, YANG M, CHENG F, et al. Effect of phosphorus on physiology and nutrient utilization of Eucalyptus urophylla×E. grandis tissue culture seedlings [J]. J NW A&F Univ (Nat Sci), 2023, 51(11): 65–75. [阳乾程, 杨梅, 程飞, 等. 磷对尾巨桉组培苗生理及养分利用的影响[J]. 西北农林科技大学学报(自然科学版), 2023, 51(11): 65–75. doi: 10.13207/j.cnki.jnwafu.2023.11.007.]
    [7] SU J Q, ZHANG F Q. Study on propagation technology about root sprout and tissue culture of Acacia melanoxylon [J]. Guangdong For Sci Technol, 2008, 24(3): 42–45. [苏锦强, 张方秋. 黑木相思根蘖促萌及组培繁育技术研究[J]. 广东林业科技, 2008, 24(3): 42–45. doi: 10.3969/j.issn.1006-4427.2008.03.008.]
    [8] LUO R, CHEN K K, QU B P, et al. Growth performance and early selection of Acacia melanoxylon clones at three sites [J]. Guangdong For Sci Technol, 2012, 28(5): 57–61. [罗锐, 陈考科, 曲保平, 等. 黑木相思无性系生长表现及早期选择[J]. 广东林业科技, 2012, 28(5): 57–61. doi: 10.3969/j.issn.1006-4427.2012.05.010.]
    [9] WU Q, ZENG B S, CHEN K K, et al. Early selection of Acacia mela- noxylon clones [J]. Guangdong For Sci Technol, 2014, 30(6): 40–44. [吴清, 曾炳山, 陈考科, 等. 黑木相思无性系早期选择[J]. 广东林业科技, 2014, 30(6): 40–44.]
    [10] QIU Z F, FAN C J, ZENG B S. The physiological and biochemical responses of Acacia melanoxylon under phosphorus deficiency [J]. J SW For Univ, 2020, 40(6): 27–33. [裘珍飞, 范春节, 曾炳山. 缺磷培养下黑木相思苗木的生理生化响应[J]. 西南林业大学学报, 2020, 40(6): 27–33. doi: 10.11929/j.swfu.201910056.]
    [11] GAO J F. Experimental Guidance for Plant Physiology [M]. Beijing: Higher Education Press, 2006: 74–76. [高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 74–76.]
    [12] LU R K. Methods for Agricultural Chemistry Analysis of Soil [M]. Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.]
    [13] LYZENGA W J, LIU Z G, OLUKAYODE T, et al. Getting to the roots of N, P, and K uptake [J]. J Exp Bot, 2023, 74(6): 1784–1805. doi: 10.1093/jxb/erad035.
    [14] ZHANG F S. New Trends in Soil and Plant Nutrition Research, Vol. 3[M]. Beijing: China Agriculture Press, 1995. [张福锁. 土壤与植物营养研究新动态, 第3卷[M]. 北京: 中国农业出版社, 1995.]
    [15] XIAO Y. Study on influence of the nitrogen, the phosphorus and the potassium element on embryo culture of Pinus tabulaeformis [D]. Yangling: Northwest A&F University, 2006. [肖颖. 氮、磷、钾元素对油松胚培养影响的研究[D]. 杨凌: 西北农林科技大学, 2006.]
    [16] SHANGGUAN X C, JIANG Y, MI L X, et al. Effects of five macro- nutrients on the growth and flavonoid accumulation of Cyclocarya paliurus callus [J]. Acta Agric Univ Jiangxi, 2011, 33(3): 502–507. [上官新晨, 蒋艳, 米丽雪, 等. 5种大量元素对青钱柳愈伤组织生长及黄酮类化合物积累的影响[J]. 江西农业大学学报, 2011, 33(3): 502–507. doi: 10.13836/j.jjau.2011090.]
    [17] SHE B Y. Study on the mechanisms of low phosphorus stress and OsGRF1 gene on the regulation of rice morphological and physiolo- gical traits [D]. Yangzhou: Yangzhou University, 2023. [佘冰雨. 低磷胁迫和OsGRF1基因调控水稻形态和生理性状的机制研究[D]. 扬州: 扬州大学, 2023. doi: 10.27441/d.cnki.gyzdu.2023.002426.]
    [18] CARSTENSEN A, HERDEAN A, SCHMIDT S B, et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain [J]. Plant Physiol, 2018, 177(1): 271–284. doi: 10.1104/pp.17.01624.
    [19] XING D K, WU Y Y. Effect of phosphorus deficiency on photosyn- thetic inorganic carbon assimilation of three climber plant species [J]. Bot Stud, 2014, 55(1): 60. doi: 10.1186/s40529-014-0060-8.
    [20] WANG P R, ZHANG F T, GAO J X, et al. An overview of chlorophyll biosynthesis in higher plants [J]. Acta Bot Boreali-Occid Sin, 2009, 29(3): 629–636. [王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 2009, 29(3): 629–636. doi: 10.3321/j.issn:1000-4025.2009.03.032.]
    [21] QIAO G, CUI B W, WEN X P, et al. Physiological and biochemical responses to low phosphorus stress for different masson pine (Pinus massoniana) provenances [J]. Seed, 2017, 36(8): 32–36. [乔光, 崔博文, 文晓鹏, 等. 不同种源马尾松幼苗对低磷胁迫的生理响应[J]. 种子, 2017, 36(8): 32–36. doi: 10.16590/j.cnki.1001-4705.2017.08.032.]
    [22] XU Y H, ZUO Y C, XI Y, et al. Influences of different Ca/P ratios and concentrations on growth characteristics of Lolium multiflorum [J]. J Agric Sci Technol, 2020, 22(5): 174–180. [徐彦红, 左意才, 席溢, 等. 不同钙磷配比及浓度对多花黑麦草生长特性的影响[J]. 中国农业科技导报, 2020, 22(5): 174–180. doi: 10.13304/j.nykjdb.2019.0167.]
    [23] CUI Y, LIU H Y, LI W Y, et al. Effect of nitrogen and phosphorous concentrations on growth, metabolites and chlorophyll fluorescence parameters of immobilized Spirulina platensis [J]. Acta Bot Boreali- Occid Sin, 2023, 43(1): 136–146. [崔岩, 刘海燕, 李武阳, 等. 固定化培养中氮磷浓度对钝顶螺旋藻生长及其代谢产物和叶绿素荧光参数的影响[J]. 西北植物学报, 2023, 43(1): 136–146. doi: 10.7606/j. issn.1000-4025.2023.01.0136.]
    [24] ROSENSTOCK N P, BERNER C, SMITS M M, et al. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests [J]. New Phytol, 2016, 211(2): 542–553. doi: 10.1111/nph.13928.
    [25] MILLA R, CASTRO-DÍEZ P, MAESTRO-MARTÍNEZ M, et al. Rela- tionships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean ever- greens [J]. New Phytol, 2005, 168(1): 167–178. doi: 10.1111/j.1469- 8137.2005.01477.x.
    [26] ZANG C F, FAN W G, PAN X J. Effect of phosphorus levels on growth, morphological characteristics and leaf element contents of Juglans sigillata Dode seedlings [J]. Sci Agric Sin, 2016, 49(2): 319–330. [臧成凤, 樊卫国, 潘学军. 供磷水平对铁核桃实生苗生长、形态特征及叶片营养元素含量的影响[J]. 中国农业科学, 2016, 49(2): 319– 330. doi: 10.3864/j.issn.0578-1752.2016.02.012.]
    [27] ZHANG Y Y, MA J L, GUAN G, et al. Differential response of nutrient content of new and old leaves of young navel orange to short-term deficiency of macroelements and secondary elements [J]. J Plant Nutr Fert, 2023, 29(2): 353–362. [张圆圆, 马金龙, 管冠, 等. 脐橙幼苗新老叶片养分含量对大、中量元素短期缺乏的差异性响应[J]. 植物营养与肥料学报, 2023, 29(2): 353–362. doi: 10.11674/zwyf.2022298.]
    [28] WANG Y H, GARVIN D F, KOCHIAN L V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: Evidence for cross talk and root/rhizosphere-mediated signals [J]. Plant Physiol, 2002, 130(3): 1361– 1370. doi: 10.1104/PP.008854.
    [29] RÓDENAS R, MARTÍNEZ V, NIEVES-CORDONES M, et al. High external K+ concentrations impair Pi nutrition, induce the phosphate starvation response, and reduce arsenic toxicity in Arabidopsis plants [J]. Int J Mol Sci, 2019, 20(9): 2237. doi: 10.3390/ijms20092237.
    [30] QIN X J, DING G J. Effects of low phosphorus stress on absorption and utilization of nitrogen and potassium in different provenances Pinus massoniana seedlings [J]. J CS Univ For Technol, 2012, 32(4): 32–36. [秦晓佳, 丁贵杰. 低磷胁迫对不同种源马尾松幼苗氮钾吸收与利用的影响[J]. 中南林业科技大学学报, 2012, 32(4): 32–36. doi: 10.3969/j.issn.1673-923X.2012.04.007.]
    [31] JIA Z H, YI J H, FU J G, et al. Effects of phosphorus treatment on flue-cured tobacco growth physiological characteristics and root configuration [J]. Soils, 2011, 43(3): 388–391. [贾志红, 易建华, 符建国, 等. 磷肥处理对烤烟生长生理及根系构型的影响[J]. 土壤, 2011, 43(3): 388–391. doi: 10.13758/j.cnki.tr.2011.03.025.]
    [32] YU Q M, XU F L, WANG W L. Effect of nitrogen and phosphorus fertilization on biomass and nutrient distribution of Cunninghamia lanceolata seedlings [J]. J Plant Nutr Fert, 2014, 20(1): 118–128. [于钦民, 徐福利, 王渭玲. 氮、磷肥对杉木幼苗生物量及养分分配的影响[J]. 植物营养与肥料学报, 2014, 20(1): 118–128. doi: 10.11674/zwyf.2014.0113.]
    [33] ZHU B X. Study on screening the rice seedling substrates and sub- strates fertilizing for mechanical transplanting [D]. Wuhan: Huazhong Agricultural University, 2015. [朱冰心. 水稻机插秧育秧基质筛选及基质培肥效应研究[D]. 武汉: 华中农业大学, 2015.]
    [34] WANG X, WANG H F, CHEN Y, et al. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize [J]. Plant Cell, 2020, 32(11): 3519–3534. doi: 10.1105/tpc.20.00361.
    [35] WANG Y, CHEN Y F, WU W H. Potassium and phosphorus transport and signaling in plants [J]. J Integr Plant Biol, 2021, 63(1): 34–52. doi: 10.1111/jipb.13053.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

白晓刚,莫颖欣,涂攀峰,曾炳山,胡冰.磷对黑木相思增殖苗丛生芽生长发育的影响[J].热带亚热带植物学报,2024,32(5):643~650

Copy
Share
Article Metrics
  • Abstract:74
  • PDF: 2181
  • HTML: 126
  • Cited by: 0
History
  • Received:June 21,2023
  • Revised:November 05,2023
  • Online: September 29,2024
Article QR Code