Effects of Simulated Eutrophic Waterlogging and Post-waterlogging Drought on the Eco-physiological Characteristics of Dalbergia odorifera
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to explore the effects of eutrophic waterlogging and post-waterlogging drought on the tolerance of terrestrial woody plants, the control (CK), nutrient (H), waterlogging (W) and eutrophication waterlogging (WH) treatments were set in the first stage. In the second stage, control-drought (CKD), nutrient- drought (HD), watering-drought (WD) and eutrophic watering-drought (WHD) treatments were set up to study the effects of different water and nutrient treatments on the growth and physiology of one-year-old Dalbergia odorifera seedlings. The results showed that D. odorifera had high survival under all treatments; the seedlings exhibited the highest biomass, net photosynthetic rate and total chlorophyll concentration under H treatment. In contrast, both W and WH treatments significantly reduced stem height increment, total biomass, net photo- synthetic rate, stomatal conductance, total chlorophyll content and leaf water potential, but significantly increased the activities of superoxide dismutase (SOD), peroxidase (POD), and contents of H2O2 and soluble protein. Notably, the impact of W stress was more pronounced than that of WH stress. Compared with the first stage, the biomass increment decreased significantly under both of CKD and HD treatments, but which showed the opposite trend under WD and WHD. Furthermore, compared with CKD and HD treatments, net photosynthetic rate significantly increased, while SOD activity and H2O2 content decreased under WD and WHD. Moreover, compared with WD, biomass increment, total chlorophyll content and POD activity increased under WHD, but Car content decreased. Therefore, it was demonstrated that nutrient supply could alleviate the negative effects of waterlogging on seedling growth of D. odorifera to a certain extent, and early waterlogging, especially eutro- phication waterlogging, was conducive to biomass accumulation of seedlings under later drought condition.

    Reference
    [1] LI D D, CISSE E H M, GUO L Y, et al. Comparable and adaptable strategies to waterlogging stress regulated by adventitious roots between two contrasting species [J]. Tree Physiol, 2022, 42(5): 971-988. doi: 10.1093/treephys/tpab165.
    [2] KREUZWIESER J, RENNENBERG H. Molecular and physiological responses of trees to waterlogging stress [J]. Plant Cell Environ, 2014, 37(10): 2245-2259. doi: 10.1111/pce.12310.
    [3] PANG J Y, ROSS J, ZHOU M X, et al. Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley [J]. Funct Plant Biol, 2007, 34(3): 221-227. doi: 10.1071/FP06158.
    [4] XIE Y H, REN B, LI F. Increased nutrient supply facilitates acclimation to high-water level in the marsh plant Deyeuxia angustifolia: The response of root morphology [J]. Aquat Bot, 2009, 91(1): 1-5. doi: 10. 1016/j.aquabot.2008.12.004.
    [5] HUANG B R, JOHNSON J W, NESMITH S, et al. Growth, physio- logical and anatomical responses of two wheat genotypes to water- logging and nutrient supply [J]. J Exp Bot, 1994, 45(2): 193-202. doi: 10.1093/jxb/45.2.193.
    [6] ZHANG S, LEI D D, WANG C, et al. Effect of eutrophic water body on antioxidant system and nutritional quality of Oenanthe javanica DC. [J]. Acta Bot Boreali-Occid Sin, 2018, 38(3): 510-516. [张帅, 雷代东, 王晨, 等. 富营养化水体对水芹抗氧化系统和营养品质的影响[J]. 西北植物学报, 2018, 38(3): 510-516. doi: 10.7606/j.issn.1000-4025. 2018.03.0510.]
    [7] TIAN G L, QI D L, ZHU J Q, et al. Effects of nitrogen fertilizer rates and waterlogging on leaf physiological characteristics and grain yield of maize [J]. Arch Agron Soil Sci, 2021, 67(7): 863-875. doi: 10.1080/03650340.2020.1791830.
    [8] DOFFO G N, MONTEOLIVA S E, RODRÍGUEZ M E, et al. Physio- logical responses to alternative flooding and drought stress episodes in two willow (Salix spp.) clones [J]. Can J For Res, 2017, 47(2): 174- 182. doi: 10.1139/cjfr-2016-0202.
    [9] MARTÍNEZ-ARIAS C, SOBRINO-PLATA J, MACAYA-SANZ D, et al. Changes in plant function and root mycobiome caused by flood and drought in a riparian tree [J]. Tree Physiol, 2020, 40(7): 886-903. doi: 10.1093/treephys/tpaa031.
    [10] HAN W J, BAI L L, LI C X, et al. Effects of flooding on the photo- synthetic response of Hemarthria altissima to drought [J]. Acta Ecol Sin, 2016, 36(18): 5712-5724. [韩文娇, 白林利, 李昌晓, 等. 前期水淹对牛鞭草后期干旱胁迫光合生理响应的影响[J]. 生态学报, 2016, 36(18): 5712-5724. doi: 10.5846/stxb201507181513.]
    [11] BAI L L, HAN W J, LI C X. Effects of simulated waterlogging on growth, physiological and biochemical characteristics of Metasequoia glyptostroboides seedlings [J]. J Zhejiang Univ (Agric Life Sci), 2015, 41(5): 505-515. [白林利, 韩文娇, 李昌晓. 模拟水淹对水杉苗木生长与生理生化特性的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 505-515. doi: 10.3785/j.issn.1008-9209.2014.09.292.]
    [12] LI M Y, LIU G, XIAO H, et al. Respones of physiological adaptability of Vetiveria zizanioides on alternating flooding-drought stress [J]. Bull Soil Water Conserv, 2014, 34(2): 48-52. [李铭怡, 刘刚, 肖海, 等. 香根草光合特性对水淹-干旱交替胁迫的响应[J]. 水土保持通报, 2014, 34(2): 48-52. doi: 10.13961/j.cnki.stbctb.2014.02.011.]
    [13] ZHANG Y Q, LI D L. Drought-flood abrupt alternation and its atmospheric circulation characteristics during flood season in southern China [J]. Clim Environ Res, 2019, 24(4): 430-444. [张玉琴, 李栋梁. 华南汛期旱涝急转及其大气环流特征[J]. 气候与环境研究, 2019, 24(4): 430-444. doi: 10.3878/j.issn.1006-9585.2018.18024.]
    [14] JIANG B H, DING Y, MIAO L F, et al. Effects of waterlogging and salt stresses on the physiological and ecological characteristics of Dalbergia odorifera seedling [J]. Nat Sci J Hainan Univ, 2020, 38(2): 132-140. [姜百惠, 丁扬, 苗灵凤, 等. 淹水和盐胁迫对降香黄檀植株生理生态特性的影响[J]. 海南大学学报(自然科学版), 2020, 38(2): 132-140. doi: 10.15886/j.cnki.hdxbzkb.2020.0019.]
    [15] TANG S B, WANG H C, GE B Z, et al. Environmental Organic Pollution Chemistry [M]. Beijing: Metallurgical Industry Press, 1996: 228-229. [唐森本, 王欢畅, 葛碧洲, 等. 环境有机污染化学[M]. 北京: 冶金工业出版社, 1996: 228-229.]
    [16] PU Y J, ZHANG L J, MIAO L F, et al. Effects of different calcium concentrations on the growth and physiological characteristics of Dal- bergia odorifera under low temperatures [J]. Plant Sci J, 2019, 37(2): 251-259. [蒲玉瑾, 张丽佳, 苗灵凤, 等. 不同钙离子浓度对低温下降香黄檀幼苗生长及生理特性的影响[J]. 植物科学学报, 2019, 37(2): 251-259. doi: 10.11913/PSJ.2095-0837.2019.20251.]
    [17] MIAO L F, ZHANG L J, PU Y J, et al. Factors that affect measurement using the WP4C dewpoint potential meter to determine water potential: Illustrated by the case of Dalbergia odorifera [J]. Plant Sci J, 2017, 35(1): 93-98. [苗灵凤, 张丽佳, 蒲玉瑾, 等. WP4C露点水势仪测定植物叶片水势时的影响因素——以降香黄檀为例[J]. 植物科学学报, 2017, 35(1): 93-98. doi: 10.11913/PSJ.2095-0837.2017.10093.]
    [18] CHENG G W, GONG H E, YAN S B, et al. Comparison of chlorophyll extraction methods in Camellia oleifera [J]. Hubei For Sci Technol, 2017, 46(6): 11-13. [程贵文, 龚洪恩, 颜送宝, 等. 油茶叶绿素提取方法的比较研究[J]. 湖北林业科技, 2017, 46(6): 11-13.]
    [19] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72(1/2): 248-254. doi: 10.1016/0003-2697(76)90527-3.
    [20] XIE J H, CHAI T T, XU R, et al. Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum [J]. Electron J Biotechnol, 2017, 27: 63-69. doi: 10.1016/j.ejbt.2017.03.007.
    [21] MALIK A I, COLMER T D, LAMBERS H, et al. Short-term water- logging has long-term effects on the growth and physiology of wheat [J]. New Phytol, 2002, 153(2): 225-236. doi: 10.1046/j.0028-646X. 2001.00318.x.
    [22] XIE R J, ZHENG L, JIAO Y, et al. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq [J]. Environ Exp Bot, 2021, 192: 104647. doi: 10.1016/j.envexpbot.2021.104647.
    [23] HERPPICH W B, VON WILLERT D J. Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species: Continuous analysis using a dewpoint hygrometer [J]. Physiol Plant, 1995, 94(3): 479-485. doi: 10.1111/j.1399-3054.1995.tb00957.x.
    [24] SCOFFONI C, MCKOWN A D, RAWLS M, et al. Dynamics of leaf hydraulic conductance with water status: Quantification and analysis of species differences under steady state [J]. J Exp Bot, 2012, 63(2): 643- 658. doi: 10.1093/jxb/err270.
    [25] MARTINS S C V, SANGLARD M L, MORAIS L E, et al. How do coffee trees deal with severe natural droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf level [J]. Trees, 2019, 33(6): 1679-1693. doi: 10.1007/s00468-019-01889-4.
    [26] LI D D, MIAO L F, CISSE E H M, et al. Dissecting the below- and aboveground specific responses of two waterlogging tolerant arbor species to nutrient supply under waterlogging conditions [J]. Tree Physiol, 2023, 43(3): 390-403.
    [27] ZHANG J. Study on Pterocarya stenoptera & Salix babylonica’s removal effect on nitrogen & phosphorus in eutrophic water [D]. Nanjing: Nanjing Forestry University, 2011. [张娟. 枫杨、垂柳对水体中氮磷污染的净化效果研究[D]. 南京: 南京林业大学, 2011.]
    [28] GUO L Y, MIAO L F, LI D D, et al. Effects of nitrogen addition and warming on growth, development, and physiological characteristics of Dalbergia odorifera T. Chen seedlings [J]. Plant Sci J, 2022, 40(2): 259-268. [郭璐瑶, 苗灵凤, 李大东, 等. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响[J]. 植物科学学报, 2022, 40(2): 259-268. doi: 10.11913/PSJ.2095-0837.2022.20259.]
    [29] KIM J M, TO T K, ISHIDA J, et al. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana [J]. Plant Cell Physiol, 2012, 53(5): 847-856. doi: 10.1093/pcp/pcs053.
    [30] HARB A, KRISHNAN A, AMBAVARAM M M R, et al. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth [J]. Plant Physiol, 2010, 154(3): 1254-1271. doi: 10.1104/pp.110.161752.
    [31] BLUM A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production [J]. Plant Cell Environ, 2017, 40(1): 4-10. doi: 10.1111/pce.12800.
    [32] QIU S, HUANG S Z, WANG H Y. Effect of Cd stress on the activity of four antioxidases in Iris pseudacorus seedlings [J]. J Plant Resour Environ, 2008, 17(1): 28-32. [仇硕, 黄苏珍, 王鸿燕. Cd胁迫对黄菖蒲幼苗4种抗氧化酶活性的影响[J]. 植物资源与环境学报, 2008, 17(1): 28-32. doi: 10.3969/j.issn.1674-7895.2008.01.005.]
    [33] DENG J X, WEI J G, YU H, et al. Effects of different fertilization treatments on growth and physiological indexes of seedling of Vacci- nium corymbosum and physicochemical properties of soil [J]. J Plant Resour Environ, 2021, 30(2): 28-34. [邓家欣, 韦继光, 於虹, 等. 不同施肥处理对高丛越橘幼苗生长和生理指标及土壤理化性质的影响[J]. 植物资源与环境学报, 2021, 30(2): 28-34. doi: 10.3969/j.issn. 1674-7895.2021.02.04.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李大东,王海波,杨帆,苗灵凤,张娟,郭璐瑶,向丽珊.富营养化水体水淹和水淹后干旱对降香黄檀生理生态的影响[J].热带亚热带植物学报,2024,32(5):651~659

Copy
Share
Article Metrics
  • Abstract:82
  • PDF: 2202
  • HTML: 122
  • Cited by: 0
History
  • Received:June 09,2023
  • Revised:August 31,2023
  • Online: September 29,2024
Article QR Code