Response of Leaf Functional Traits of Rare Plant Rosa anemoniflora to Environmental Changes
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Leaf functional traits can reflect the adaptation strategies of plant to environment. Based on the sample survey, six wild Rosa anemoniflora communities at different altitude in Yanping District, Fujian Province were selected to study the effects of environment factors on leaf functional traits by using coefficient of variation, Pearson correlation analysis and redundancy analysis. The results showed that the habitat heterogeneity of R. anemoniflora communities was strong, the CV of soil factors under different environment ranged from 9.44% to 122.28%, among which soil pH was the smallest, and soil available phosphorus content was the largest. There are significant differences among soil factor indexes under different environment. The soil pH, contents of organic matter, total nitrogen (N), phosphorus (P) and potassium (K) and available nitrogen (AN), phosphorus (AP) and potassium (AK) were high in the middle altitude areas, and the soil stoichiometric ratio was low, while the soil moisture content and soil stoichiometric ratio were the highest in the high altitude areas. Under different environment, the CV of leaf functional traits of R. anemoniflora ranged from 2.49% to 97.58%, among which leaf water content was the smallest, and the specific leaf weight was the largest. Along the altitude, the contents of P, K, calcium (Ca) and magnesium (Mg) in leaves showed an increasing trend, indicating that the diversity of leaf functional traits was abundant, and had strong adaptability to heterogeneous habitats. Pearson correlation analysis showed that the dry matter content was significantly positively correlated with Ca content in leaves, and the contents of K and Mg were negatively correlated with C/N and N/P in leaves. Rosa anemoniflora at high altitude could increase stress resistance by improving the absorption of K, Ca and Mg to cope with habitat changes. The redundancy analysis showed that soil AK and water content were the main driving factors of leaf functional trait change with environment. Therefore, it was suggested that the leaf of R. anemoniflora adapted to the changes of altitude and habitat through functional trait variation and trait combination. The study on the functional traits of R. anemoniflora leaves and their relationship with environment factors would help to understand the impact of small-scale environmental changes on plant variation, and provide theoretical guidance for the conservation, development and genetic improvement of wild resources of R. anemoniflora.

    Reference
    [1] LIU S W, AI Y B, LIU Y H. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformisand its environmental explanations in Beijing Songshan Mountain [J]. J Beijing For Univ, 2021, 43(4): 47–55. [刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报, 2021, 43(4): 47–55. doi: 10.12171/j.1000-1522.20200292.]
    [2] SUN M, TIAN K, ZHANG Y, et al. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 2017, 35(6): 940– 949. [孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 2017, 35(6): 940–949. doi: 10.11913/PSJ.20950837.2017.60940. ]
    [3] MENG T T, NI J, WANG G H. Plant functional traits, environments and ecosystem functioning [J]. J Plant Ecol, 2007, 31(1): 150–165. [孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1): 150–165. doi: 10.17521/cjpe.2007.0019.]
    [4] Cornelissen J H C, LavoreL S, Garnier E, et al. Handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Aust J Bot, 2003, 51(4): 335–380. doi: 10.1071/ BT02124.
    [5] HE Y Q, SHI X J, CHEN G J, et al. Response and adaptation of leaf functional traits of Eurya emarginata to environmental factors [J]. Acta Ecol Sin, 2022, 42(6): 2418–2429. [何雅琴, 史晓洁, 陈国杰, 等. 滨柃叶功能性状对环境因子的响应[J]. 生态学报, 2022, 42(6): 2418– 2429. doi: 10.5846/stxb202101180189.]
    [6] TIAN Y L, YANG H, WANG F L, et al. Differences of leaf functional traits of Pinus tabuliformis and its response to altitude gradient in the middle of Qinling Mountains [J]. Acta Bot Boreali-Occid Sin, 2021, 41(2): 300–309. [田岳梨, 杨航, 王芳玲, 等. 秦岭中段山脊油松叶功能性状差异及其对海拔梯度的响应[J]. 西北植物学报, 2021, 41(2): 300–309. doi: 10.7606/j.issn.1000-4025.2021.02.0300.]
    [7] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. doi: 10. 1038/nature02403.
    [8] WANG W J, LÜ H, ZHONG Y M, et al. Relationship between heteromorphic leaf traits of Populus euphratica and its individual development [J]. J Beijing For Univ, 2019, 41(2): 62–69. [王文娟, 吕慧, 钟悦鸣, 等. 胡杨异形叶性状与其个体发育的关系[J]. 北京林业大学学报, 2019, 41(2): 62–69. doi: 10.13332/j.1000-1522.20180364.]
    [9] GENG M Y, CHEN F Q, LÜ K, et al. Effects of developmental stage on the leaf functional traits of the endangered shrub species Disanthus cercidifolius var. longipes [J]. Plant Sci J, 2018, 36(6): 851–858. [耿梦娅, 陈芳清, 吕坤, 等. 濒危植物长柄双花木(Disanthus cercidifoliusvar. longipes)叶功能性状随生长发育阶段的变化[J]. 植物科学学报, 2018, 36(6): 851–858. doi: 10.11913/PSJ.2095-0837.2018.60851.]
    [10] Hölscher D, Schmitt S, Kupfer K. Growth and leaf traits of four broad-leaved tree species along a hillside gradient [J]. Forstw Cbl, 2002, 121(5): 229–239. doi: 10.1046/j.1439-0337.2002.02031.x.
    [11] JIANG A P, JIANG J M, LIU J. Responses of leaf traits of Sassafras tsumu (Hemsl.) Hemsl. along an altitudinal gradient [J]. Chin J Ecol, 2016, 35(6): 1467–1474. [蒋艾平, 姜景民, 刘军. 檫木叶片性状沿海拔梯度的响应特征[J]. 生态学杂志, 2016, 35(6): 1467–1474. doi: 10.13292/j.1000-4890.201606.017.]
    [12] Graae B J, DE Frenne P, Kolb A, et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients [J]. Oikos, 2012, 121(1): 3–19. doi: 10.1111/j.1600-0706.2011.19694.x.
    [13] SONG L L, FAN J W, WU S H. Research advances on changes of leaf traits along an altitude gradient [J]. Prog Geogr, 2011, 30(11): 1431– 1439. [宋璐璐, 樊江文, 吴绍洪. 植物叶片性状沿海拔梯度变化研究进展[J]. 地理科学进展, 2011, 30(11): 1431–1439. ]
    [14] HE N P, LIU C C, ZHANG J H, et al. Perspectives and challenges in plant traits: From organs to communities [J]. Acta Ecol Sin, 2018, 38(19): 6787–6796. [何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19): 6787– 6796. doi: 10.5846/stxb201710241900.]
    [15] LIN J L. Investigation on distribution and habitat of wild Dendrobium in Fujian Province [J]. For Survey Design, 2009(2): 13–16. [林建丽. 福建省野生石斛属植物分布及生境调查研究[J]. 林业勘察设计, 2009(2): 13–16. doi: 10.3969/j.issn.1004-2180.2009.02.004.
    [16] ZHANG Z K, WANG Q, WU Y H, et al. Research progress of plant functional traits based on CiteSpace [J]. Acta Ecol Sin, 2020, 40(3): 1101–1112. [张增可, 王齐, 吴雅华, 等. 基于CiteSpace植物功能性状的研究进展[J]. 生态学报, 2020, 40(3): 1101–1112. doi: 10.5846/ stxb201809172031.]
    [17] LUO D, SHI Y J, SONG F H, et al. Variation and correlation of leaf functional traits and photosynthetic characteristics of 38 hazelnut germplasm resources [J]. Chin J Ecol, 2021, 40(1): 11–22. [罗达, 史彦江, 宋锋惠, 等. 38个榛种质资源叶功能性状与光合特征变异及其相关性[J]. 生态学杂志, 2021, 40(1): 11–22. doi: 10.13292/j.10004890.202101.022.]
    [18] LI J P, TIAN D S, HE Y C, et al. Response and mechanism of potassium content in leaves of alpine meadow plants to multiple nutrient additions [J]. J Beijing For Univ, 2022, 44(4): 116−123. [李佳璞, 田大栓, 何奕成, 等. 高寒草甸植物叶片钾含量对多种养分添加的响应及机理[J]. 北京林业大学学报, 2022, 44(4): 116–123. doi: 10. 12171/j.1000-1522.20210074.]
    [19] UmaÑa M N, Swenson N G. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest [J]. Oecologia, 2019, 191(1): 153–164. doi: 10.1007/s00442-019-04453-6.
    [20] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies [J]. New Phytol, 1999, 143(1): 155–162. doi: 10.1046/j.1469-8137.1999. 00427.x.
    [21] CHEN C, LIU D H, WU J J, et al. Leaf traits of Quercus wutaishanica and their relationship with topographic factors in Mount Dongling [J]. Chin J Ecol, 2015, 34(8): 2131–2139. [陈晨, 刘丹辉, 吴键军, 等. 东灵山地区辽东栎叶性状与地形因子关系[J]. 生态学杂志, 2015, 34(8): 2131–2139. doi: 10.13292/j.1000-4890.2015.0174.]
    [22] GAO W, LIN J, HUANG S D, et al. Seasonal dynamics of leaf stoichiometry for different tree species in a coastal sand dune in subtropical China [J]. Chin J Trop Crops, 2018, 39(11): 2304–2312. [高伟, 林捷, 黄石德, 等. 南亚热带海岸沙地不同树种叶片化学计量学季节动态研究[J]. 热带作物学报, 2018, 39(11): 2304–2312. doi: 10. 3969/j.issn.1000-2561.2018.11.028.]
    [23] Koerselman W, Meuleman A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33(6): 1441–1450. doi: 10.2307/2404783.
    [24] RONG Q Q, LIU J T, CAI Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensisLour. in the Laizhou Bay coastal wetland, China [J]. Ecol Eng, 2015, 76: 57–65. doi: 10. 1016/j.ecoleng.2014.03.002.
    [25] LIU C, WU X, WANG X P, et al. Relationships among shrub leaf traits in Inner Mongolia and comparison in different spatial scales [J]. J Beijing For Univ, 2012, 34(6): 23–29. [刘超, 武娴, 王襄平, 等. 内蒙古灌木叶性状关系及不同尺度的比较[J]. 北京林业大学学报, 2012, 34(6): 23–29. doi: 10.13332/j.1000-1522.2012.06.017.]
    [26] WHITE P J, BROADLEY M R. Calcium in plants [J]. Ann Bot, 2003, 92(4): 487–511. doi: 10.1093/aob/mcg164.
    [27] CAO J H, ZHU M J, HUANG F, et al. Comparison study on calcium forms in plant leaves under different geological backgrounds: A case study in Maolan, Guizhou Province [J]. Bull Mineral Petrol Geochem, 2011, 30(3): 251–260. [曹建华, 朱敏洁, 黄芬, 等. 不同地质条件下植物叶片中钙形态对比研究——以贵州茂兰为例[J]. 矿物岩石地球化学通报, 2011, 30(3): 251–260. doi: 10.3969/j.issn.1007-2802. 2011.03.002.]
    [28] LIU J, LONG J, LI J, et al. Differentiation characteristics of calcium bioabsorption capacity of dominant tree species with altitude in typical karst mountain area [J]. Ecol Environ Sci, 2021, 30(8): 1589–1598. [刘进, 龙健, 李娟, 等. 典型喀斯特山区优势树种钙吸收能力的海拔分异特征研究[J]. 生态环境学报, 2021, 30(8): 1589–1598. doi: 10. 16258/j.cnki.1674-5906.2021.08.005.]
    [29] BAI Y X, LIU D P, XING Z Y, et al. Responses of contents of different forms of calcium in leaf of Castanopsis fargesii to variations of altitude gradients and soil factors [J]. J Plant Res Environ, 2022, 31(4): 28–36. [柏雨萱, 刘丹萍, 邢郑瑜, 等. 栲树叶片中不同类型钙含量对海拔梯度和土壤因子变化的响应[J]. 植物资源与环境学报, 2022, 31(4): 28–36. doi: 10.3969/j.issn.1674-7895.2022.04.04.]
    [30] ZHANG H W, MA J Y, SUN W, et al. Altitudinal variation in functional traits of Picea schrenkianavar. tianschanicaand their relationship to soil factors in Tianshan Mountains, northwest China [J]. Acta Ecol Sin, 2010, 30(21): 5747–5758. [张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21): 5747–5758. ]
    [31] HU Y S, YAO X Y, LIU Y H. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains [J]. Acta Ecol Sin, 2014, 34(20): 5915–5924. [胡耀升, 么旭阳, 刘艳红. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报, 2014, 34(20): 5915–5924. doi: 10.5846/stxb201301230133.]
    [32] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 2004, 101(30): 11001–11006. doi: 10.1073/pnas.0403588101.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

俞群,高伟,施家意,傅成杰,林国江,康天琪,邱敏.珍稀植物银粉蔷薇叶功能性状对环境变化的响应[J].热带亚热带植物学报,2024,32(6):705~714

Copy
Share
Article Metrics
  • Abstract:70
  • PDF: 126
  • HTML: 86
  • Cited by: 0
History
  • Received:March 18,2023
  • Revised:July 20,2023
  • Online: December 12,2024
Article QR Code