Analysis of Differentially Expressed Genes in the Calyx of Dunnia sinensis and Screening of Transcription Factors for Color Regulation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Dunnia sinensis is a rare and endangered plant unique to Guangdong Province. It has white metaseptic calyx segments with obvious veins and has good ornamental value. However, there is no genomic information about it. In order to understand the molecular regulation of calyx development and explore related functional genes, the expression of RNA-seq and differential genes in sepals, fruits, leaves and petals of D. sinensis were analyzed, to screening the specific expression genes or signaling pathways in sepals. The results showed that there were 3 972 differentially expressed genes in sepals compared with leaves, which were mainly concentrated in metabolic pathways, secondary metabolic biosynthesis, photosynthesis, phenyl-C biosynthesis, etc. Compared with petals, there were 9 680 differentially expressed genes (3 616 up-regulated, 6 024 down-regulated, FC>2) in sepals, which were mainly concentrated in plant hormones, phenyl-C biosynthesis, plant pathogen interaction, secondary metabolic biosynthesis and other pathways. Compared with fruit, there were 4 655 differentially expressed genes (1 827 up-regulated, 2 828 down-regulated, FC>2) in sepals, and the enrichment and regulation pathways of differential gene were similar to those of petal transcriptome. Cluster analysis showed that there were three types of transcription factors involved in the development of sepals with specific high expression: ERFs, MYBs and WRKYs. Among them, DsTMYB3 of the MYB family might be involved in the color regulation of sepals. Analysis of highly expressed genes in tissues showed that UBI11 promoter was widely expressed in all tissues, while CSLG2 promoter were specifically expressed in calyx, and the promoters of these genes would be used as genetic tools to drive the targeted genome forming expression or specific expression in calyx. Therefore, some of differentially expressed genes between calyx and the other tissues of D. sinensis, might be involved in the color regulation of sepals, which would provide a basis for the genetic transformation and functional study of D. sinensis.

    Reference
    [1] LIN Z M, LI H Q, PANG Z Y, et al. Study on the biological characteristics of Dunnia sinensis Tutch. in Gudou Mountain Nature Reserve [J]. J S China Norm Univ (Nat Sci), 2010(3): 77-81. [林正眉, 李惠琴, 庞志云, 等. 广东古兜山绣球茜(Dunnia sinensis Tutch.)的生物学特性研究[J]. 华南师范大学学报(自然科学版), 2010(3): 77-81.]
    [2] REN Z K, YANG L X. The habitat and propagation techniques of Dunnia sinensis Tutcher, a critically rare and endangered plant in southern China [J]. Ecol Sci, 2020, 39(3): 25-30. [任泽楷, 杨礼香. 珍稀濒危植物绣球茜(Dunnia sinensis Tutcher)的生境特征和繁殖技术[J]. 生态科学, 2020, 39(3): 25-30. doi: 10.14108/j.cnki.1008-8873. 2020.03.004.]
    [3] WANG J W. Have a completely new appraisal of Rubiaceae [J]. Plant J, 2002(1): 19-21. [汪劲武. 刮目相看茜草科(下) [J]. 植物杂志, 2002(1): 19-21.]
    [4] YU J C, HUANG X F, WEI Y L, et al. Survey and analysis of Dunnia sinensis Tutch. community which belong to national secondary protection plants in Nankunshan Mountain, Guangdong [J]. Chin Hort Abs, 2018, 34(2): 100-102. [余金昌, 黄小凤, 韦阳连, 等. 广东南昆山国家Ⅱ级保护植物——绣球茜草的群落调查分析[J]. 中国园艺文摘, 2018, 34(2): 100-102. doi: 10.3969/j.issn.1672-0873.2018.02.033.]
    [5] ZHANG Y, CHEN S, XU X Y, et al. The complete chloroplast genome of Dunnia sinensis (Rubiaceae): A monotypic species endemic to Guangdong, China [J]. Mitochondrial DNA B, 2020, 5(1): 814-816. doi: 10.1080/23802359.2020.1715876.
    [6] AGARWAL P, KUMAR R, PAREEK A, et al. Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis [J]. Mol Genet Genom, 2017, 292(1): 145-156. doi: 10.1007/s00438-016-1262-4.
    [7] PAN J W, LI Z, WANG Q G, et al. Transcriptomics analysis of NaCl response in foxtail millet (Setaria italica L.) seeds at germination stage [J]. Sci Agric Sin, 2019, 52(22): 3964-3975. [潘教文, 李臻, 王庆国, 等. NaCl处理谷子萌发期种子的转录组学分析[J]. 中国农业科学, 2019, 52(22): 3964-3975. doi: 10.3864/j.issn.0578-1752.2019.22.003.]
    [8] NIU Y L, JIANG X M, XU X Y. Research advances on transcription factor MYB gene family in plant [J]. Mol Breed, 2016, 14(8): 2050-2059. [牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8): 2050-2059. doi: 10.13271/j. mpb.014.002050.]
    [9] YANG Z R, WANG X C, LI X M, et al. Advance on the study of transcription factors in higher plants [J]. Hereditas, 2004, 26(3): 403-408. [杨致荣, 王兴春, 李西明, 等. 高等植物转录因子的研究进展[J]. 遗传, 2004, 26(3): 403-408. doi: 10.3321/j.issn:0253-9772.2004.03. 027.]
    [10] KIM D, JEON S J, YANDERS S, et al. MYB3 plays an important role in lignin and anthocyanin biosynthesis under salt stress condition in Arabidopsis [J]. Plant Cell Rep, 2022, 41(7): 1549-1560. doi: 10.1007/ s00299-022-02878-7.
    [11] HENG W, CHEN J, YE Z F, et al. Development of calyx and its controlling techniques of young fruit of Dangshansu pear [J]. J Anhui Agric Univ, 2010, 37(2): 238-243. [衡伟, 陈捷, 叶振风, 等. 砀山酥梨幼果花萼发育及其调控技术研究[J]. 安徽农业大学学报, 2010, 37(2): 238-243. doi: 10.13610/j.cnki.1672-352x.2010.02.023.]
    [12] DONG M F, ZHANG C S. Morphologic observation and anatomical study on the development of calyx in Physalis alkekengi L. var. francheti Mast [J]. J Chin Electron Microsc Soc, 2016, 35(5): 454-458. [董美芳, 张从顺. 黄果酸浆花萼发育的形态解剖学观察[J]. 电子显微学报, 2016, 35(5): 454-458. doi: 10.3969/j.issn.1000-6281.2016. 05.013.]
    [13] FUKUDA Y, SUZUKI K, MURATA J. The function of each sepal in pollinator behavior and effective pollination in Aconitum japonicum var. montanum [J]. Plant Species Biol, 2001, 16(2): 151-157. doi: 10.1046/ j.1442-1984.2001.00059.x.
    [14] RYDING O. Amount of calyx fibres in Lamiaceae, relation to calyx structure, phylogeny and ecology [J]. Plant Syst Evol, 2007, 268(1/2/3/ 4): 45-58. doi: 10.1007/s00606-007-0537-y.
    [15] WANG W C, LI L Q. A new system of classification of the genus Clematis (Ranunculaceae) [J]. Acta Phytotaxon Sin, 2005, 43(5): 431-488. [王文采, 李良千. 铁线莲属一新分类系统[J]. 植物分类学报, 2005, 43(5): 431-488. doi: 10.1360/aps040130.]
    [16] LU D Z. New records and recognition of wild orchidaceous plants in Beijing [J]. J Beijing Agric Coll, 1992(1): 70-74. [路端正. 北京野生兰科植物的识别与新分布[J]. 北京农学院学报, 1992(1): 70-74. doi: 10.13473/j.cnki.issn.1002-3186.1992.01.009.]
    [17] CHANG H L, REN Y, FENG L T. Morphological observations on metamorphosed sepals in Anemone rivularis var. flore-minore (Ranunculaceae) [J]. Acta Phytotaxon Sin, 2005, 43(3): 225-232. [常鸿莉, 任毅, 冯鲁田. 小花草玉梅变态花萼片的形态学研究[J]. 植物分类学报, 2005, 43(3): 225-232.]
    [18] WANG J, OARD J H. Rice ubiquitin promoters: Deletion analysis and potential usefulness in plant transformation systems [J]. Plant Cell Rep, 2003, 22(2): 129-134. doi: 10.1007/s00299-003-0657-y.
    [19] MASURA S S, PARVEEZ G K A, ISMAIL I. Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene [J]. New Biotechnol, 2010, 27(4): 289-299. doi: 10.1016/j.nbt.2010.01.337.
    [20] ZHANG L L. Molecular mechanism of receptor kinase FERONIAregulated self-incompatibility in Brassica rapa [D]. Tai’an: Shandong Agricultural University, 2022. [张丽丽. 大白菜受体激酶FERONIA调控自交不亲和的分子机制[D]. 泰安: 山东农业大学, 2022. doi: 10.27277/d.cnki.gsdnu.2022.000067.]
    [21] WANG L, YANG T, LIN Q L, et al. Receptor kinase FERONIA regulates flowering time in Arabidopsis [J]. BMC Plant Biol, 2020, 20(1): 26. doi: 10.1186/s12870-019-2223-y.
    [22] ZHONG Z B, LUO S X, LI A M, et al. Distyly and pollination biology of Dunnia sinensis (Rubiaceae) [J]. J Trop Subtrop Bot, 2009, 17(3): 267-274. [钟智波, 罗世孝, 李爱民, 等. 绣球茜的二型花柱及其传粉生物学初步研究[J]. 热带亚热带植物学报, 2009, 17(3): 269-274. doi: 10.3969/j.issn.1005-3395.2009.03.010.]
    [23] ALLAN A C, HELLENS R P, LAING W A. MYB transcription factors that colour our fruit [J]. Trends Plant Sci, 2008, 13(3): 99-102. doi: 10. 1016/j.tplants.2007.11.012.
    [24] XU W J, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes [J]. Trends in Plant Sci, 2015, 20(3): 176-185. doi: 10.1016/j.tplants.2014.12.001.
    [25] WANG X P, NIU Y L, ZHENG Y. Multiple functions of MYB transcription factors in abiotic stress responses [J]. Int J Mol Sci, 2021, 22(11): 6125. doi: 10.3390/ijms22116125.
    [26] WANG Y J, ZHANG Y, FAN C J, et al. Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia [J]. BMC Plant Biol, 2021, 21(1): 328. doi: 10.1186/ s12870-021-03083-6.
    [27] RAYMOND O, GOUZY J, JUST J, et al. The Rosa genome provides new insights into the domestication of modern roses [J]. Nat Genet, 2018, 50(6): 772-777. doi: 10.1038/s41588-018-0110-3.
    [28] FENG S Q, WANG Y L, YANG S, et al. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J]. Planta, 2010, 232(1): 245-255. doi: 10.1007/s00425-010-1170-5.
    [29] ZHANG Q X, ZHANG H, SUN L D, et al. The genetic architecture of floral traits in the woody plant Prunus mume [J]. Nat Commun, 2018, 9(1): 1702. doi: 10.1038/s41467-018-04093-z.
    [30] WANG L H, TANG W, HU Y W, et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang [J]. Plant J, 2019, 99(2): 359-378. doi: 10.1111/tpj.14330.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

江嘉慧,黄晨,林正眉,何碧胜,李晓云.绣球茜花萼的差异表达基因分析及其颜色调控转录因子的筛选[J].热带亚热带植物学报,2024,32(4):489~499

Copy
Share
Article Metrics
  • Abstract:123
  • PDF: 4509
  • HTML: 3883
  • Cited by: 0
History
  • Received:March 19,2023
  • Revised:July 18,2023
  • Online: August 21,2024
Article QR Code