Recovery of Tree Species Diversity and Biomass of Degraded Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan Province, Southwest China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [49]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to investigate the changes in tree species composition and biomass storage of degraded forests, we selected the evergreen broad-leaved forests in Ailao Mountain, Yunnan Province, southwest China were selected as the objects, and the forest community structure, tree species diversity and biomass changes were compared at different succession stages. The results showed that the number of families of tree species decreased first and then increased from early successional stage (ES) to late successional stage (LS), while the numbers of genera and species gradually increased. Moreover, the Margalef richness index, Simpson dominance index, Shannon-Wiener diversity index, and Pielou evenness index all increased with succession process. The tree biomass showed an increasing trend, which at ES and middle successional stage (MS) were 9.87% and 65.98% of that at LS, respectively. Furthermore, the tree diversity index had significant positive correlation with the total biomass at plot level (P<0.05). Therefore, it was suggested that with the succession process, the growth of trees and the tree species diversity were the main factors affecting tree biomass storage, and the forest restoration in the Ailao Mountains was relatively slow because of moist and cold climate.

    Reference
    [1] POORTER L, BONGERS F, AIDE T M, et al. Biomass resilience of Neotropical secondary forests [J]. Nature, 2016, 530(7589): 211-214. doi: 10.1038/nature16512.
    [2] POORTER L, ROZENDAAL D M A, BONGERS F, et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time [J]. Nat Ecol Evol, 2019, 3(6): 928-934. doi: 10.1038/s41559-019-0882-6.
    [3] ZHANG J Y, ZHAO H L, ZHANG T H, et al. Dynamics of species diversity of communities in restoration processes in Horqin Sandy Land [J]. Chin J Plant Ecol, 2004, 28(1): 86-92. [张继义, 赵哈林, 张铜会, 等. 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J]. 植物生态学报, 2004, 28(1): 86-92. doi: 10.17521/cjpe. 2004.0013.]
    [4] WANG S X, WANG X A, LI G Q, et al. Species diversity and environmental interpretation in the process of community succession in the Ziwu Mountain of Shaanxi Province [J]. Acta Ecol Sin, 2010, 30(6): 1638-1647. [王世雄, 王孝安, 李国庆, 等. 陕西子午岭植物群落演替过程中物种多样性变化与环境解释[J]. 生态学报, 2010, 30(6): 1638-1647.]
    [5] MARGALEF R. Information theory in ecology [J]. Gen Syst Yearb, 1958, 3: 36-71.
    [6] WU Y, LIU Q, HE H, et al. Dynamics of species diversity in artificial restoration process of subalpine coniferous forest [J]. Chin J Appl Ecol, 2004, 15(8): 1301-1306. [吴彦, 刘庆, 何海, 等. 亚高山针叶林人工恢复过程中物种多样性变化[J]. 应用生态学报, 2004, 15(8): 1301-1306.]
    [7] AUCLAIR A N, GOFF F G. Diversity relations of upland forests in the western Great Lakes area [J]. Am Nat, 1971, 105(946): 499-528. doi: 10.1086/282742.
    [8] GAO X M, WANG W, DU X J, et al. Size structure, ecological significance and population origin of Quercus wutaishanica forest in Beijing mountainous area [J]. Chin J Plant Ecol, 2001, 25(6): 673-678. [高贤明, 王巍, 杜晓军, 等. 北京山区辽东栎林的径级结构、种群起源及生态学意义[J]. 植物生态学报, 2001, 25(6): 673-678.]
    [9] LI Y Y, SHAO M A. The change of plant diversity during natural recovery process of vegetation in Ziwuling Area [J]. Acta Ecol Sin, 2004, 24(2): 252-260. [李裕元, 邵明安. 子午岭植被自然恢复过程中植物多样性的变化[J]. 生态学报, 2004, 24(2): 252-260. doi: 10. 3321/j.issn:1000-0933.2004.02.013.]
    [10] SAATCHI S S, HOUGHTON R A, DOS SANTOS A R C, et al. Distribution of aboveground live biomass in the Amazon basin [J]. Glob Change Biol, 2007, 13(4): 816-837. doi: 10.1111/j.1365-2486. 2007.01323.x.
    [11] PENG S L, FANG W. Features of biomass and productivity dynamics in successional process of low subtropical forest [J]. Ecol Sci, 1995(2): 1-9. [彭少麟, 方炜. 南亚热带森林演替过程生物量和生产力动态特征[J]. 生态科学, 1995(2): 1-9.]
    [12] ZHOU X L, CAI Q, XIONG X Y, et al. Ecosystem carbon stock and within-system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China [J]. Chin J Plant Ecol, 2018, 42(7): 703-712. [周序力, 蔡琼, 熊心雨, 等. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. doi: 10.17521/cjpe.2018.0064.]
    [13] XIA Y J, ZHANG J, ZOU S, et al. Dynamics of structural diversity and carbon storage along a successional gradient in south subtropical forest [J]. Ecol Environ Sci, 2018, 27(3): 424-431. [夏艳菊, 张静, 邹顺, 等. 南亚热带森林群落演替过程中结构多样性与碳储量的变化[J]. 生态环境学报, 2018, 27(3): 424-431. doi: 10.16258/j.cnki.1674-5906. 2018.03.004.]
    [14] WU Z Y. The Vegetation of China [M]. Beijing: Science Press, 1980: 306-356. [吴征镒. 中国植被[M]. 北京: 科学出版社, 1980: 306356.]
    [15] WEN H D, LIN L X, YANG J, et al. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China [J]. Chin J Plant Ecol, 2018, 42(4): 419-429. [温韩东, 林露湘, 杨洁, 等. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. doi: 10.17521/cjpe. 2017.0272.]
    [16] QIU X Z, XIE S C. Studies on the Forest Ecosystem in Ailao Mountain Yunnan, China [M]. Kunming: Yunnan Science and Technology Press, 1998: 1-7. [邱学忠, 谢寿昌. 哀牢山森林生态系统研究[M]. 昆明: 云南科技出版社, 1998: 1-7.]
    [17] FENG W T, ZOU X M, SHA L Q, et al. Comparisons between seasonal and diurnal patterns of soil respiration in a montane evergreen broadleaved forest of Ailao Mountains, China [J]. Chin J Plant Ecol, 2008, 32(1): 31-39. [冯文婷, 邹晓明, 沙丽清, 等. 哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较[J]. 植物生态学报, 2008, 32(1): 31-39. doi: 10.3773/j.issn.1005-264x.2008.01. 004.]
    [18] LI Z P, WEI Z F, YANG X D. Seasonal variations of soil nematode community at different secondary succession stages of evergreen broad-leaved forests in Ailao Mountain [J]. Chin J Ecol, 2016, 35(11): 3023-3031. [李志鹏, 韦祖粉, 杨效东. 哀牢山常绿阔叶林不同演替阶段土壤线虫群落的季节变化特征[J]. 生态学杂志, 2016, 35(11): 3023-3031. doi: 10.13292/j.1000-4890.201611.008.]
    [19] CURTIS J T, MCINTOSH R P. An upland forest continuum in the prairie-forest border region of Wisconsin [J]. Ecology, 1951, 32(3): 476-496. doi: 10.2307/1931725.
    [20] MARGALEF R. Diversidad de especies en las comunidades naturales [J]. Publ Inst Biol Apl, 1951, 9(5): 5-27.
    [21] SIMPSON E H. Measurement of diversity [J]. Nature, 1949, 163(4148): 688-688. doi: 10.1038/163688a0.
    [22] SHANNON C E, WIENER W. The Mathematical Theory of Communication [M]. Urbana: The University of Illinois Press, 1963: 12-16.
    [23] PIELOU E C. The measurement of diversity in different types of biological collections [J]. J Theor Biol, 1966, 13: 131-144. doi: 10.1016/ 0022-5193(66)90013-0.
    [24] CODY M L, DIAMOND J M. Ecology and Evolution of Communities [M]. Cambridge: Harvard University Press, 1975: 214-257.
    [25] R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2022. http://www.r-project.org/
    [26] WEN L, SONG T Q, DU H, et al. The succession characteristics and its driving mechanism of plant community in karst region, southwest China [J]. Acta Ecol Sin, 2015, 35(17): 5822-5833. [文丽, 宋同清, 杜虎, 等. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17): 5822-5833. doi: 10.5846/stxb201310192524.]
    [27] QI L H, PENG Z H, ZHANG X D, et al. Species diversity and biomass allocation of vegetation restoration communities on degraded lands [J]. Chin J Ecol, 2007, 26(11): 1697-1702. [漆良华, 彭镇华, 张旭东, 等. 退化土地植被恢复群落物种多样性与生物量分配格局[J]. 生态学杂志, 2007, 26(11): 1697-1702.]
    [28] WANG W F, LEI X D, MA Z H, et al. Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada [J]. For Sci, 2011, 57(6): 506-515. doi: 10.1093/forestscience/57.6.506.
    [29] VIEIRA S, DE CAMARGO P B, SELHORST D, et al. Forest structure and carbon dynamics in Amazonian tropical rain forests [J]. Oecologia, 2004, 140(3): 468-479. doi: 10.1007/s00442-004-1598-z.
    [30] TEIXEIRA H M, CARDOSO I M, BIANCHI F J J A, et al. Linking vegetation and soil functions during secondary forest succession in the Atlantic forest [J]. For Ecol Manage, 2020, 457: 117696. doi: 10.1016/j. foreco.2019.117696.
    [31] ZHANG M, GAO X J, SUN H J, et al. Spatial structure characteristic of different storey in secondary poplar-birth forest in the mountainous regions of northern Hebei [J]. J NE For Univ, 2014, 42(9): 33-38. [张曼, 高兴九, 孙海静, 等. 冀北山地杨桦次生林不同林层的空间结构特征[J]. 东北林业大学学报, 2014, 42(9): 33-38. doi: 10.13759/j. cnki.dlxb.20140721.054.]
    [32] YAN E R, WANG X H, HUANG J J. Shifts in plant nutrient use strategies under secondary forest succession [J]. Plant Soil, 2006, 289(1/2): 187-197. doi: 10.1007/s11104-006-9128-x.
    [33] ZHOU R L, HOU Y P, ZUO J C, et al. The physiological adaptation mechanisms of four common desert species in response to desert environments [J]. Acta Ecol Sin, 2015, 35(2): 340-349. [周瑞莲, 侯玉平, 左进城, 等. 不同沙地共有种沙生植物对环境的生理适应机理[J]. 生态学报, 2015, 35(2): 340-349. doi: 10.5846/stxb201304060609.]
    [35] GUO W W, ZHANG Q, KANG X G, et al. Species composition and characteristics of saplings for spruce-fir forest at different succession stages in Changbai Mountain [J]. J Nanjing For Univ (Nat Sci), 2017, 41(1): 109-116. [郭韦韦, 张青, 亢新刚, 等. 长白山云冷杉林不同演替阶段树种组成及林下更新研究[J]. 南京林业大学学报(自然科学版), 2017, 41(1): 109-116. doi: 10.3969/j.issn.1000-2006.2017.01.017.]
    [36] CARDINALE B J, DUFFY J E, GONZALEZ A, et al. Biodiversity loss and its impact on humanity [J]. Nature, 2012, 486(7401): 59-67. doi: 10.1038/nature11148.
    [37] HOOPER D U, VITOUSEK P M. The effects of plant composition and diversity on ecosystem processes [J]. Science, 1997, 277(5330): 1302-1305. doi: 10.1126/science.277.5330.1302.
    [38] YANG Q S, YANG H B, ZHENG Z M, et al. A dataset of species composition and biomass in different successional stages of Tiantong typical evergreen broad-leaved forests (2008—2017) [J]. China Sci Data, 2022, 7(4): 283-291. [杨庆松, 杨海波, 郑泽梅, 等. 2008—2017年天童不同演替阶段典型常绿阔叶林植物物种组成和生物量数据集[J]. 中国科学数据, 2022, 7(4): 283-291.]
    [39] KUMAR P, CHEN H Y H, SEARLE E B, et al. Dynamics of understorey biomass, production and turnover associated with long-term overstorey succession in boreal forest of Canada [J]. For Ecol Manage, 2018, 427: 152-161. doi: 10.1016/j.foreco.2018.05.066.
    [40] JIN B, ZENG Z Q, PENG P, et al. Tree biomass of evergreen broadleaf forest in mid-subtropical region of China at three succession stages [J]. Hunan For Sci Technol, 2017, 44(5): 42-45. [金彪, 曾掌权, 彭湃, 等. 中亚热带常绿阔叶林不同演替阶段乔木层生物量特征[J]. 湖南林业科技, 2017, 44(5): 42-45. doi: 10.3969/j.issn.1003-5710.2017. 05.009.]
    [41] GONG C, WANG S L, ZENG Z Q, et al. Carbon storage and its distribution pattern of evergreen broad-leaved forests at different succession stages in mid-subtropical China [J]. Chin J Ecol, 2011, 30(9): 1935-1941. [宫超, 汪思龙, 曾掌权, 等. 中亚热带常绿阔叶林不同演替阶段碳储量与格局特征[J]. 生态学杂志, 2011, 30(9): 1935-1941.]
    [42] ZENG Z Q, TANG H, HU Q, et al. Tree biomass distribution patterns with a forest succession in subtropical China [J]. Agron J, 2021, 113(2): 706-710. doi: 10.1002/agj2.20406.
    [43] LENNOX G D, GARDNER T A, THOMSON J R, et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests [J]. Glob Change Biol, 2018, 24(12): 5680-5694. doi: 10.1111/gcb.14443.
    [44] LASKY J R, URIARTE M, BOUKILI V K, et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession [J]. Ecol Lett, 2014, 17(9): 1158-1167. doi: 10.1111/ ele.12322.
    [45] HEARTSILL S T, SCATENA F N, LUGO A E, et al. Changes in structure, composition, and nutrients during 15 years of hurricane-induced succession in a subtropical wet forest in Puerto Rico [J]. Biotropica, 2010, 42(4): 455-463. doi: 10.1111/j.1744-7429.2009.00609.x.
    [46] KUBOTA Y, KATSUDA K, KIKUZAWA K. Secondary succession and effects of clear-logging on diversity in the subtropical forests on Okinawa Island, southern Japan [J]. Biodiv Conserv, 2005, 14(4): 879-901. doi: 10.1007/s10531-004-0657-4.
    [47] NONG Y, LU L H, YOU J H, et al. The plant diversity and biomass of trees in different successional stages of secondary forest of south subtropical [J]. J CS Univ For Technol, 2018, 38(12): 83-88. [农友, 卢立华, 游建华, 等. 南亚热带不同演替阶段次生林植物多样性及乔木生物量[J]. 中南林业科技大学学报, 2018, 38(12): 83-88. doi: 10.14067/j.cnki.1673-923x.2018.12.011.]
    [48] HUANG X R. Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi [J]. Biodiv Sci, 2018, 26(7): 690-700. [黄小荣. 广西马尾松林植物功能多样性与生产力的关系[J]. 生物多样性, 2018, 26(7): 690-700. doi: 10. 17520/biods.2018092.]
    [49] TILMAN D, KNOPS J, WEDIN D, et al. The influence of functional diversity and composition on ecosystem processes [J]. Science, 1997, 277(5330): 1300-1302. doi: 10.1126/science.277.5330.1300.
    [50] LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments [J]. Nature, 200
    Related
    Cited by
Get Citation

李雪楠,杞金华,徐志雄,鲁志云,范泽鑫,栗忠飞,张树斌.云南哀牢山退化常绿阔叶林乔木多样性和生物量的恢复[J].热带亚热带植物学报,2024,32(4):500~510

Copy
Share
Article Metrics
  • Abstract:161
  • PDF: 4528
  • HTML: 3873
  • Cited by: 0
History
  • Received:February 28,2023
  • Revised:May 22,2023
  • Online: August 21,2024
Article QR Code