Molecular Evolution of Chloroplast Gene ycf94 in Ferns
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    As a newly discovered chloroplast gene in recent years, ycf94 gene, with length of about 200 bp, is conserved among ferns. However, the origin and function of ycf94 require further investigation. The study was performed on the ycf94 gene sequence of 94 species of ferns, in the phylogenetic background, analyzing codon usage bias, evolution rate and selection pressure. Results showed that the codon bias was weak in ycf94 gene which the 3rd position of codon prefers A/U, variously in closely species. The codon bias was mainly produced by gene mutation. In addition, based on the differences in the structural characteristics of ycf94 between Pteridaceae and other ferns, their evolution rate was compared, suggesting that there were significant difference in transversion rate, nonsynonymous substitution rate and omega. Besides, only one position selection site 74A was detected. The strong negative selection pressure indicated that the function and structure of ycf94 were mostly stabilized. The results provide a new clue of phylogenetic analysis in ferns and functional studies of ycf94 gene.

    Reference
    [1] RAUBESON L A, JANSEN R K. Chloroplast genomes of plants[M]//HENRY R. Plant Diversity and Evolution:Genotypic and Phenotypic Variation in Higher Plants. Cambridge:CABI, 2005:45-68. doi:10. 079/9780851999043.0045.
    [2] JANSEN R K, RUHLMAN T A. Plastid genomes of seed plants[M]//Genomics of Chloroplasts and Mitochondria:Advances in Photosyn-thesis and Respiration. New York:Springer, 2012:103-126. doi:10. 1007/978-94-007-2920-9_5.
    [3] ZHANG X C, WEI R, LIU H M, et al. Phylogeny and classification of the extant lycophytes and ferns from China[J]. Chin Bull Bot, 2013, 48(2):119-137.[张宪春, 卫然, 刘红梅, 等. 中国现代石松类和蕨类的系统发育与分类系统[J]. 植物学报, 2013, 48(2):119-137. doi:10.3724/SP.J.1259.2013.00119.]
    [4] PPG Ⅰ. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603. doi:10.1111/jse.12229.
    [5] WOLF P G, ROPER J M, DUFFY A M. The evolution of chloroplast genome structure in ferns[J]. Genome, 2010, 53(9):731-738. doi:10. 1139/G10-061.
    [6] SONG M, KUO L Y, HUIET L, et al. A novel chloroplast gene reported for flagellate plants[J]. Am J Bot, 2018, 105(1):117-121. doi:10. 1002/ajb2.1010.
    [7] CULLIS C A, VORSTER B J, VAN DER VYVER C, et al. Transfer of genetic material between the chloroplast and nucleus:How is it related to stress in plants?[J]. Ann Bot, 2009, 103(4):625-633. doi:10.1093/aob/mcn173.
    [8] HSU P Y, BENFEY P N. Small but mighty:Functional peptides encoded by small ORFs in plants[J]. Proteomics, 2018, 18(10):1700038. doi:10.1002/pmic.201700038.
    [9] KEARSE M, MOIR R, WILSON A, et al. Geneious Basic:An integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649. doi:10.1093/bioinformatics/bts199.
    [10] ZHANG D, GAO F L, JAKOVLIĆ I, et al. PhyloSuite:An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Mol Ecol Resour, 2020, 20(1):348-355. doi:10.1111/1755-0998.13096.
    [11] SUEOKA O. Total cross section measurements for positron and electron scattering on benzene molecules[J]. J Phys B:At Mol Opt Phys, 1988, 21(20):L631. doi:10.1088/0953-4075/21/20/003.
    [12] WRIGHT F. The 'effective number of codons' used in a gene[J]. Gene, 1990, 87(1):23-29. doi:10.1016/0378-1119(90)90491-9.
    [13] POND S L K, FROST S D W, MUSE S V. HyPhy:Hypothesis testing using phylogenies[J]. Bioinformatics, 2005, 21(5):676-679. doi:10. 1093/bioinformatics/bti079.
    [14] YANG Z H. PAML 4:Phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591. doi:10.1093/molbev/msm088.
    [15] JIANG Y, DENG F, WANG H L, et al. An extensive analysis on the global codon usage pattern of baculoviruses[J]. Arch Virol, 2008, 153(12):2273-2282. doi:10.1007/s00705-008-0260-1.
    [16] ROMERO H, ZAVALA A, MUSTO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces[J]. Nucl Acids Res, 2000, 28(10):2084-2090. doi:10.1093/nar/28.10.2084.
    [17] ZHOU M, LONG W, LI X. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants[J]. For Stud China, 2008, 10(4):235-242. doi:10.1007/s11632-008-0047-1.
    [18] SCHUETTPELZ E, SCHNEIDER H, HUIET L, et al. A molecular phylogeny of the fern family Pteridaceae:Assessing overall relationships and the affinities of previously unsampled genera[J]. Mol Phylogenet Evol, 2007, 44(3):1172-1185. doi:10.1016/j.ympev.2007.04.011.
    [19] PRINCE V E, PICKETT F B. Splitting pairs:The diverging fates of duplicated genes[J]. Nat Rev Genet, 2002, 3(11):827-837. doi:10. 1038/nrg928.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李子菲,苏应娟,王艇.蕨类植物叶绿体基因ycf94的分子进化研究[J].热带亚热带植物学报,2023,31(4):541~548

Copy
Share
Article Metrics
  • Abstract:102
  • PDF: 350
  • HTML: 268
  • Cited by: 0
History
  • Received:February 18,2023
  • Revised:March 13,2023
  • Online: August 04,2023
  • Published: July 20,2023
Article QR Code