Effects of Defoliation on the Growth of Tree Seedlings Under Warming Condition
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to explore climate warming could counteract the negative effects of defoliation caused by insects to some extent, the height growth of Larix gmelinii, Pinus koraiensis and Abies fabri seedlings under different defoliation degrees in current year and the budburst in the next year under different temperature were compared by using control variable method. The results showed that the height growth of L. gmelinii in the current year was significantly affected under 50% defoliation, while did P. koraiensis and A. fabri under 75% defoliation. At ambient temperature, the bud phenology of L. gmelinii in the next year advanced than that at 20 ℃ and 25 ℃, and the height growth was better. At ambient temperature (13 ℃~18 ℃), the bud phenology of P. koraiensis and A. fabri was delayed and the height growth was affected by 75% defoliation, while the adverse effect of defoliation was counteracted at 20 ℃ or 25 ℃. Therefore, in the future warming scenario, it was speculated that the adverse effects of defoliation caused by insects on P. koraiensis and A. fabri would be counteracted to some extent, and the resistance to a insects nd recovery would be significantly higher than that of L. gmelinii.

    Reference
    [1] Forzieri G, Girardello M, Ceccherini G, et al. Emergent vulnerability to climate-driven disturbances in European forests[J]. Nat Commun, 2021, 12(1): 1081. doi: 10.1038/s41467-021-21399-7.
    [2] Marini L, Økland B, Jönsson A M, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests[J]. Ecography, 2017, 40(12): 1426–1435. doi: 10.1111/ecog.02769.
    [3] Esper J, Buntgen U, Frank D C, et al. 1200 years of regular outbreaks in alpine insects[J]. Proc Roy Soc B Biol Sci, 2007, 274(1610): 671–679. doi: 10.1098/rspb.2006.0191
    [4] CHEN Z C, WAN X C. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees[J]. Chin J Plant Ecol, 2016, 40(9): 958–968.[陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展[J]. 植物生态学报, 2016, 40(9): 958–968. doi: 10.17521/cjpe.2015.0443.]
    [5] Ayres M P, Lombardero M J. Assessing the consequences of global change for forest disturbance from herbivores and pathogens[J]. Sci Total Environ, 2000, 262(3): 263–286. doi: 10.1016/S0048-9697(00)00528-3.
    [6] LIU W W, WANG X K, LU F, et al. Influence of afforestation, reforestation, forest logging, climate change, CO2 concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem[J]. Acta Ecol Sin, 2016, 36(8): 2113–2122.[刘魏魏, 王效科, 逯非, 等. 造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响[J]. 生态学报, 2016, 36(8): 2113–2122. doi: 10.5846/stxb201411022143.]
    [7] Bale J S, Masters G J, Hodkinson I D, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[J]. Glob Chang Biol, 2002, 8(1): 1–16. doi: 10.1046/j.1365-2486.2002.00451.x.
    [8] Régnière J, Powell J, Bentz B, et al. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling[J]. J Insect Physiol, 2012, 58(5): 634–647. doi: 10.1016/j.jinsphys.2012.01.010.
    [9] Gomi T, Adachi K, Shimizu A, et al. Northerly shift in voltinism watershed in Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) along the Japan Sea coast: evidence of global warming?[J]. Appl Entomol Zool, 2009, 44(3): 357–362. doi: 10.1303/aez.2009.357.
    [10] JING J. Responses of synchrony between leaf-feeding insects and host plants in subtropical evergreen broad-leaved forests to climate change[D]. Shanghai: East China Normal University, 2015.[景军. 亚热带常绿阔叶林食叶昆虫和寄主植物物候同步性及其对气候变化的响应[D]. 上海: 华东师范大学, 2015.]
    [11] Fan Z X, Bräuning A. Tree-ring evidence for the historical cyclic defoliator outbreaks on Larix potaninii in the central Hengduan Mountains, SW China[J]. Ecol Indic, 2017, 74: 160–171. doi: 10.1016/j.ecolind.2016.11.026.
    [12] Castagneri D, Prendin A L, Peters R L, et al. Long-term impacts of defoliator outbreaks on larch xylem structure and tree-ring biomass[J]. Front Plant Sci, 2020, 11: 1078. doi: 10.3389/fpls.2020.01078.
    [13] FU Y H, PIAO S L, DE Beeck m O, et al. Recent spring phenology shifts in western Central Europe based on multiscale observations[J]. Glob Ecol Biogeogr, 2014, 23(11): 1255–1263. doi: 10.1111/geb.12210.
    [14] GE Q S, WANG H J, Rutishauser T, et al. Phenological response to climate change in China: A meta-analysis[J]. Glob Chang Biol, 2015, 21(1): 265–274. doi: 10.1111/gcb.12648
    [15] Gao S, Liang E Y, Liu R S, et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas[J]. Nat Ecol Evol, 2022, 6(4): 397–404. doi: 10.1038/s 41559-022-01668-4.
    [16] SONG Y S, SU H J, YU H Y, et al. Evaluation of economic losses caused by forest pest disasters between 2006 and 2010 in China[J]. For Pest Dis, 2011, 30(6): 1–4.[宋玉双, 苏宏钧, 于海英, 等. 2006—2010年我国林业有害生物灾害损失评估[J]. 中国森林病虫, 2011, 30(6): 1–4. doi: 10.3969/j.issn.1671-0886.2011.06.001.]
    [17] WANG J, JIANG Z H, ZHANG H D, et al. Variations of spring extreme temperature indexes in northeast China and their relationships with the Arctic oscillation[J]. Adv Clim Chang Res, 2007, 3(1): 41–45.[王冀, 江志红, 张海东, 等. 1957—2000年东北地区春季极端气温变化及其与北极涛动的关系[J]. 气候变化研究进展, 2007, 3(1): 41–45. doi: 10.3969/j.issn.1673-1719.2007.01.008.]
    [18] XU W. Study on the induced resistance of Larix gmelinii to insects[D]. Harbin: Northeast Forestry University, 2006.[徐伟. 兴安落叶松诱导抗虫性研究[D]. 哈尔滨: 东北林业大学, 2006.]
    [19] YUAN H E, YAN S C, TONG L L, et al. Content differences of condensed tannin in needles of Larix gmelinii by cutting needles and insect feeding[J]. Acta Ecol Sin, 2009, 29(3): 1415–1420.[袁红娥, 严善春, 佟丽丽, 等. 剪叶损伤与昆虫取食对兴安落叶松(Larix gmelinii)针叶中缩合单宁诱导作用的差异[J]. 生态学报, 2009, 29(3): 1415–1420. doi: 10.3321/j.issn:1000-0933.2009.03.039.]
    [20] LI J, GONG Q. Characteristics of summer air temperature in northeast China[J]. J Meteor Environ, 2006, 22(1): 6–10.[李辑, 龚强. 东北地区夏季气温变化特征分析[J]. 气象与环境学报, 2006, 22(1): 6–10. doi: 10.3969/j.issn.1673-503X.2006.01.002.]
    [21] Barry K M, Pinkard E A. Growth and photosynthetic responses following defoliation and bud removal in eucalypts[J]. For Ecol Manage, 2013, 293: 9–16. doi: 10.1016/j.foreco.2012.12.012.
    [22] Anttonen S, Piispanen R, Ovaska J, et al. Effects of defoliation on growth, biomass allocation, and wood properties of Betula pendula clones grown at different nutrient levels[J]. Can J For Res, 2002, 32(3): 498–508. doi: 10.1139/x01-217.
    [23] GAO R T, QIN X X, LI J Z, et al. A preliminary study on the relationship between artificial defoliation of poplar trees and the growth of them[J]. Sci Silv Sin, 1985, 21(2): 199–205.[高瑞桐, 秦锡祥, 李吉震, 等. 食叶害虫的食叶量与树木生长关系[J]. 林业科学, 1985, 21(2): 199–205.]
    [24] Trumble J T, Kolodny-Hirsch D M, Ting I P. Plant compensation for arthropod herbivory[J]. Annu Rev Entomol, 1993, 38: 93-119. doi: 10.1146/annurev.en.38.010193.000521.
    [25] VanderKlein D W, Reich P B. The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits[J]. New Phytol, 1999, 144(1): 121–132. doi: 10.1046/j.1469-8137.1999.00496.x.
    [26] Hoogesteger J, Karlsson P S. Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa)[J]. Funct Ecol, 1992, 6(3): 317–323. doi: 10.2307/2389523.
    [27] Eyles A, Smith D, Pinkard E A, et al. Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation[J]. Tree Physiol, 2011, 31(6): 592–603. doi: 10.1093/treephys/tpr046.
    [28] Pinkard E A, Battaglia M, Mohammed C L. Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus[J]. Tree Physiol, 2007, 27(7): 1053–1063. doi: 10.1093/treephys/27.7.1053.
    [29] XU Z C, LI K, LI Z Y, et al. Compensative merchanism of Chinese pine damaged by pine caterpillars[J]. J Beijing For Univ, 1996, 18(1): 61–65.[许志春, 李凯, 李镇宇, 等. 油松对松毛虫危害的补偿机制研究[J]. 北京林业大学学报, 1996, 18(1): 61–65.]
    [30] Quentin A G, Beadle C L, O’Grady A P, et al. Effects of partial defoliation on closed canopy Eucalyptus globulus Labilladière: Growth, biomass allocation and carbohydrates[J]. For Ecol Manage, 2011, 261(3): 695–702. doi: 10.1016/j.foreco.2010.11.028.
    [31] Eyles A, Pinkard E A, Mohammed C. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies[J]. Tree Physiol, 2009, 29(6): 753–764. doi: 10.1093/treephys/tpp014.
    [32] Li M, Hoch G, Körner C. Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline[J]. Trees, 2002, 16(4): 331–337. doi: 10.1007/s00468-002-0172-8.
    [33] Roitto M, Markkola A, Julkunen-Tiitto R, et al. Defoliation-induced responses in peroxidases, phenolics, and polyamines in scots pine (Pinus sylvestris L.) needles[J]. J Chem Ecol, 2003, 29(8): 1905-1918. doi: 10.1023/A:1024858413437.
    [34] LIU Z G. Defense syndromes of young leaves against insect herbivores in subtropical evergreen broad-leaved forests[D]. Shanghai: East China Normal University, 2011.[刘志国. 亚热带常绿阔叶林植物幼叶虫食防御对策研究[D]. 上海: 华东师范大学, 2011.]
    [35] Quiring D T, McKinnon M L. Why does early-season herbivory affect subsequent budburst?[J]. Ecology, 1999, 80(5): 1724–1735. doi: 10.1890/0012-9658(1999)080[1724:WDESHA]2.0.CO;2.
    [36] Carroll A L, Quiring D T. Herbivory modifies conifer phenollogy: Induced amelioration by a specialist folivore[J]. Oecologia, 2003, 136(1): 88–95. doi: 10.1007/s00442-003-1240-5.
    [37] Deslauriers A, Fournier M P, Cartenì F, et al. Phenological shifts in conifer species stressed by spruce budworm defoliation[J]. Tree Physiol, 2019, 39(4): 590–605. doi: 10.1093/treephys/tpy135.
    [38] Chen Z, Kolb T E, Clancy K M. Mechanisms of Douglas-fir resistance to western spruce budworm defoliation: Bud burst phenology, photosynthetic compensation and growth rate[J]. Tree Physiol, 2001, 21(16): 1159–1169. doi: 10.1093/treephys/21.16.1159.
    [39] Ren P, Néron V, Rossi S, et al. Warming counteracts defoliation-induced mismatch by increasing herbivore-plant phenological synchrony[J]. Glob Chang Biol, 2020, 26(4): 2072–2080. doi: 10.1111/gcb. 14991.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

江政,邵剑文,任平.升温情境中叶损对树木幼苗生长的影响[J].热带亚热带植物学报,2024,32(2):179~186

Copy
Share
Article Metrics
  • Abstract:162
  • PDF: 436
  • HTML: 288
  • Cited by: 0
History
  • Received:February 12,2023
  • Online: March 22,2024
  • Published: March 20,2024
Article QR Code