Effects of Light Quality, Light Duration and Rotation on Nocturnal Movement of Oxalis triangularis ‘Purpurea’
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The leaves of Oxalis triangularis ‘Purpurea’ have significant nocturnal movement, which is characterized by a circadian rhythm of opening and closing. The effects of light quality, duration, and vibration on nocturnal movement of Oxalis were investigated in a climate chamber with controlled light and a time-laps camera. The results showed that light wavelength was a critical factor for the nocturnal movement pattern of Oxalis. The longer the wavelength, the faster the leaf unfolds, the shorter the wavelength, the slower the leaf closure. Under continuous light for 3 days, the leaves did not close, except that the leaves opened and closed only at 18:00 under red light. When 12 h/12 h (light/dark) photoperiod lasted for 3 days, it took 45-61 min for the leaves to unfold in the morning and 85-120 min to close completely at night. The leaves had unfolded before 8:00 AM except white light. The leaves could still unfold for 3-5 h every day under continuous dark. Horizonal rotation could change the nocturnal movement pattern of Oxalis. When the leaves were rotated at 300 r/min for 0.5-6 h, it will not close completely during rotation, only close to about 60°. The longer the rotating time, the faster the rate of leaf closure after stopping rotation. When rotation stopped after 2 h, the leaves would not close, so there was a certain range of adaptability to external stress of Oxalis. Therefore, when applying O. triangularis ‘Purpurea’ in the garden, short-wavelength illumination could be used to extend the unfolding time of leaves, increase its ornamental effect, and avoid exposure to the sun at noon.

    Reference
    [1] LAZZARO L, FERRETTI G, BIANCHI E, et al. Treatment by glyphosate-based herbicide allowed recovering native species after Oxalis pes-caprae L. invasion: Indications from a Mediterranean island[J]. Plant Biosyst, 2019, 153(5): 651–659. doi: 10.1080/11263504.2018.1536083.
    [2] SHTEIN I, KOYFMAN A, ESHEL A, et al. Autotomy in plants: Organ sacrifice in Oxalis leaves[J]. J Roy Soc Interface, 2019, 16(151): 20180737. doi: 10.1098/rsif.2018.0737.
    [3] YUE L R, SUN M T. Study on photosynthetic characteristics and drought tolerance of Oxalis triangularis ‘Purpurea’[J]. Jiangsu Agric Sci, 2013, 41(8): 169–171.[岳莉然, 孙妙婷. 紫叶酢浆草光合特性及耐旱性研究[J]. 江苏农业科学, 2013, 41(8): 169–171. doi: 10.15889/j.issn.1002-1302.2013.08.131.]
    [4] YOU L, DAI Z W, CHEN L, et al. Research progress of nyctinastic movement of plant[J]. Plant Physiol J, 2021, 57(10): 1888–1896.[游乐, 戴中武, 陈蕾, 等. 植物感夜运动研究进展[J]. 植物生理学报, 2021, 57(10): 1888–1896. doi: 10.13592/j.cnki.ppj.2020.0620.]
    [5] MANCUSO S, SHABALA S. Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance[M]. Berlin, Heidelberg: Springer, 2007. doi: 10.1007/978-3-540-68071-0.
    [6] TAKADA N, KATO E, UEDA K, et al. A novel leaf-movement inhibitor of a nyctinastic weed, Sesbania exaltata Cory, designed on a naturally occurring leaf-opening substance and its application to a potential, highly selective herbicide[J]. Tetrahed Lett, 2002, 43(43): 7655–7658. doi: 10.1016/S0040-4039(02)01848-8.
    [7] MINORSKY P V. The functions of foliar nyctinasty: A review and hypothesis[J]. Biol Rev, 2019, 94(1): 216–229. doi: 10.1111/brv.12444.
    [8] KUMKE J M. Self-excitation of leaf movements in Oxalis regnellii under different light qualities[J]. J Interdiscip Res, 1985, 16(2): 93-106. doi: 10.1080/09291018509359877.
    [9] ZHAO L L, WANG Y X, XUE Q Q, et al. Research progress of plant nyctinasty and its mechanism[J]. Chin Wild Plant Resour, 2020, 39(5): 49–54.[赵露露, 王云霞, 薛琼琼, 等. 植物感夜运动及其机制的研究进展[J]. 中国野生植物资源, 2020, 39(5): 49–54. doi: 10.3969/j. issn.1006-9690.2020.05.010.]
    [10] VAN LOON L C. The intelligent behavior of plants[J]. Trends Plant Sci, 2016, 21(4): 286–294. doi: 10.1016/j.tplants.2015.11.009.
    [11] EHLERINGER J, FORSETH I. Solar tracking by plants[J]. Science, 1980, 210(4474): 1094–1098. doi: 10.1126/science.210.4474.1094.
    [12] BEHNKE H D, SJOLUND R D. Sieve Elements: Comparative Structure, Induction and Development[M]. Berlin, Heidelberg: Springer, 1990. doi: 10.1007/978-3-642-74445-7.
    [13] SHIM J S, KUBOTA A, IMAIZUMI T. Circadian clock and photoperiodic flowering in Arabidopsis: Constans is a hub for signal integration[J]. Plant Physiol, 2017, 173(1): 5–15. doi: 10.1104/pp.16.01327.
    [14] YUAN X L, WANG Z S, JIA X P, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family[J]. Acta Agric Zhejiang, 2020, 32(6): 1133–1140.[袁玺垒, 王振山, 贾小平, 等. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133–1140. doi: 10.3969/j.issn.1004-1524.2020.06.21.]
    [15] SHI Y, GUO S, DONG S F, et al. Research advances in circadian rhythm regulation genes CCA1/LHY in Arabidopsis[J]. Mol Plant Breed, 2020, 18(21): 7080–7087.[史勇, 郭莎, 董世凤, 等. 拟南芥生物节律调节基因CCA1/LHY的研究进展[J]. 分子植物育种, 2020, 18(21): 7080–7087. doi: 10.13271/j.mpb.018.007080.]
    [16] CHEN K, ZHANG L, PENG Y J, et al. Related research progress on circadian clock regulating plant growth and metabolism process[J]. Plant Physiol J, 2021, 57(2): 313–322.[陈克, 张亮, 彭亚军, 等. 生物钟调控植物生长代谢过程的相关研究进展[J]. 植物生理学报, 2021, 57(2): 313–322. doi: 10.13592/j.cnki.ppj.2020.0432.]
    [17] KANG J H, CHON Y S, CHOI K O, et al. Leaf movement regulated by light condition in Oxalis triangularis[J]. Hort Environ Biotechnol, 2009, 50(4): 371–375.
    [18] OIKAWA T, ISHIMARU Y, MUNEMASA S, et al. Ion channels regulate nyctinastic leaf opening in Samanea saman[J]. Curr Biol, 2018, 28(14): 2230–2238.e7. doi: 10.1016/j.cub.2018.05.042.
    [19] SELLERS B A, SMEDA R J, JOHNSON W G. Diurnal fluctuations and leaf angle reduce glufosinate efficacy[J]. Weed Technol, 2003, 17(2): 302–306. doi: 10.1614/0890-037X(2003)017[0302:DFALAR]2.0.CO;2.
    [20] KOLLER D, ZAMSKI E. The phototropic pulvinus of bean Phaseolus vulgaris L.: Functional features[J]. Plant Biol, 2002, 4(5): 584–594. doi: 10.1055/s-2002-35442.
    [21] NAKANISHI F, NAKAZAWA M, KATAYAMA N. Opening and closing of Oxalis leaves in response to light stimuli[J]. J Biol Educ, 2005, 39(2): 87–91. doi: 10.1080/00219266.2005.9655968.
    [22] SHAO H B. The regulation and control of flowering time and photoreceptors in higher plants: Ⅰ. The regulation and control of genes and photoreceptors in the flowering time[J]. Life Sci Res, 2001, 5(S1): 149–152.[邵宏波. 高等植物开花时程的调控与光受体Ⅰ. 开花时程的基因与光受体调控[J]. 生命科学研究, 2001, 5(S1): 149–152. doi: 10.16605/j.cnki.1007-7847.2001.s1.032.]
    [23] KIM H Y. Light-regulated leaf movement and signal transduction in nyctinastic plants[J]. J Photosci, 1997, 4(1): 23–30.
    [24] LIU C C, WELHAM C V J, ZHANG X Q, et al. Leaflet movement of Robinia pseudoacacia in response to a changing light environment[J]. J Integr Plant Biol, 2007, 49(4): 419–424. doi: 10.1111/j.1744-7909.2007.00392.x.
    [25] LUBNA, ASAF S, JAN R, et al. Complete chloroplast genome characterization of Oxalis corniculata and its comparison with related species from family Oxalidaceae[J]. Plants, 2020, 9(8): 928. doi: 10.3390/plants9080928.
    [26] COSGROVE D J. Wall extensibility: Its nature, measurement and relationship to plant cell growth[J]. New Phytol, 1993, 124(1): 1–23. doi: 10.1111/j.1469-8137.1993.tb03795.x.
    [27] JIANG Y W. Leaf movement mechanism of Mimosa pudica[J]. Mod Chem Res, 2019(2): 197–199.[江一唯. 含羞草的叶片运动机制[J]. 当代化工研究, 2019(2): 197–199.]
    [28] HAGIHARA T, MANO H, MIURA T, et al. Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica[J]. Nat Commun, 2022, 13(1): 6412. doi: 10.1038/s41467-022-34106-x.
    [29] VAN DOORN W G, KAMDEE C. Flower opening and closure: An update[J]. J Exp Bot, 2014, 65(20): 5749–5757. doi: 10.1093/jxb/eru327.
    [30] XIN H R, LIU Y M, KNEEPKENS R. Effect of light intensity and light quality on the environmental adaptation of Mimosa pudica[J] Agric Sci Eng China, 2020, 32(6): 25–28.[辛浩然, 刘玉梅, KNEEPKENS R. 光照强度和光质对含羞草环境适应性的影响[J]. 中国农业文摘农业工程, 2020, 32(6): 25–28. doi: 10.19518/j.cnki.cn11-2531/s.2020.0156.]
    [31] DONG S J. Effects of LED supplemental light on pepper seedling growth and arbuscular mycorrhizal fungi colonization[D]. Hangzhou: Zhejiang University, 2021.[董桑婕. LED补光对辣椒幼苗生长和丛枝菌根真菌定殖调控作用的研究[D]. 杭州: 浙江大学, 2021. doi: 10.27461/d.cnki.gzjdx.2021.001931.]
    [32] LEE Y, SATTER R L. Effects of white, blue, red light and darkness on pH of the apoplast in the Samanea pulvinus[J]. Planta, 1989, 178(1): 31–40. doi: 10.1007/BF00392524.
    [33] KWIATKOWSKA M, BOHDANOWICZ J, CUBAŁA M, et al. A new pollination system in non-cleistogamous species of Viola results from nyctinastic (night-closing) petal movements: A mixed outcrossingselfing strategy[J]. Flora, 2019, 253: 1–9. doi: 10.1016/j.flora.2019.01.007.
    [34] RODRIGUES T M, MACHADO S R. Pulvinus functional traits in relation to leaf movements: A light and transmission electron microscopy study of the vascular system[J]. Micron, 2008, 39(1): 7–16. doi: 10.1016/j.micron.2007.09.001.
    [35] SHEPHERD V A. From semi-conductors to the rhythms of sensitive plants: The research of J.C. Bose[J]. Cell Mol Biol, 2005, 51(7): 607-619. doi: 10.1170/T670.
    [36] UEDA M, NIWA M, YAMAMURA S. Trigonelline, a leaf-closing factor of the nyctinastic plant, Aeschynomene indica[J]. Phytochemistry, 1995, 39(4): 817–819. doi: 10.1016/0031-9422(95) 00064-E.
    [37] PUTTONEN E, BRIESE C, MANDLBURGER G, et al. Quantification of overnight movement of birch (Betula pendula) branches and foliage with short interval terrestrial laser scanning[J]. Front Plant Sci, 2016: 222. doi: 10.3389/fpls.2016.00222.
    [38] VOLKOV A G, BAKER K, FOSTER J C, et al. Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica[J]. Bioelectrochemistry, 2011, 81(1): 39–45. doi: 10.1016/j. bioelechem.2011.01.004.
    [39] DARWIN C, DARWIN F. The Power of Movement in Plants[M]. Cambridge: Cambridge University Press, 2009: 280-316. doi: 10.1017/CBO9780511693670.
    [40] BLATT M R. Cellular signaling and volume control in stomatal movements in plants[J]. Annu Rev Cell Dev Biol, 2000, 16: 221–241. doi: 10.1146/annurev.cellbio.16.1.221.
    [41] SATTER R L, GUGGINO S E, LONERGAN T A, et al. The effects of blue and far red light on rhythmic leaflet movements in Samanea and Albizzia[J]. Plant Physiol, 1981, 67(5): 965–968. doi: 10.1104/pp.67.5.965.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

拓万里,游乐,冯乐,翟俊文,吴沙沙.光质、光照时间和振荡对‘紫叶’酢浆草叶感夜性运动的影响[J].热带亚热带植物学报,2024,32(2):171~178

Copy
Share
Article Metrics
  • Abstract:142
  • PDF: 550
  • HTML: 287
  • Cited by: 0
History
  • Received:November 23,2022
  • Online: March 22,2024
  • Published: March 20,2024
Article QR Code