Research Progress of the Molecular Mechanisms of Light-regulated Plant Seed Germination
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [52]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Germination is the key development stage for seed plants entering the agricultural ecosystem. For light-requiring seeds, light is one of the most important environmental signals regulating germination. Red light promotes, whereas far-red light inhibits seed germination. Phytochromes are the major photoreceptors that regulate seed germination. Activated phytochromes promote the degradation of Phytochrome-Interacting-Factor 1 (PIF1), the master repressor of germination, to regulate the expression of genes related to gibberellin and abscisic metabolism and signaling pathways, leading to the initiation of seed germination. Furthermore, a series of epigenetic factors dynamically affect the chromatin structure of germination-related genes and regulate their expression to modulate seed germination process. Here, we summarize the progress, especially the transcriptional and epigenetic mechanisms in light-regulated seed germination, and discuss their applications in agricultural production in future.

    Reference
    [1] WEITBRECHT K, MÜLLER K, LEUBNER-METZGER G. First off the mark: Tarly seed germination[J]. J Exp Bot, 2011, 62(10): 3289–3309. doi: 10.1093/jxb/err030.
    [2] HAN C, YANG P F. Studies on the molecular mechanisms of seed germination[J]. Proteomics, 2015, 15(10): 1671–1679. doi: 10.1002/pmic.201400375.
    [3] SANO N, RAJJOU L, NORTH H M. Lost in translation: Physiological roles of stored mRNAs in seed germination[J]. Plants (Basel), 2020, 9(3): 347. doi: 10.3390/plants9030347.
    [4] PASZKIEWICZ G, GUALBERTO J M, BENAMAR A, et al. Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth[J]. Plant Cell, 2017, 29(1): 109–128. doi: 10.1105/tpc.16.00700.
    [5] ZEIDLER M. Analysis of phytochrome-dependent seed germination in Arabidopsis[J]. Methods Mol Biol, 2022, 2494: 117–124. doi: 10.1007/978-1-0716-2297-1_8.
    [6] IWASAKI M, PENFIELD S, LOPEZ-MOLINA L. Parental and environmental control of seed dormancy in Arabidopsis thaliana[J]. Annu Rev Plant Biol, 2022, 73(1): 355–378. doi: 10.1146/annurevarplant-102820-090750.
    [7] FOOTITT S, CLEWES R, FEENEY M, et al. Aquaporins influence seed dormancy and germination in response to stress[J]. Plant Cell Environ, 2019, 42(8): 2325–2339. doi: 10.1111/pce.13561.
    [8] FOOTITT S, HUANG Z Y, CLAY H A, et al. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. Plant J, 2013, 74(6): 1003–1015. doi: 10.1111/tpj.12186.
    [9] ZHAO H Y, ZHANG Y M, ZHENG Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5[J]. Front Plant Sci, 2022, 13: 1000803. doi: 10.3389/fpls.2022.1000803.
    [10] DEBEAUJON I, KOORNNEEF M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid[J]. Plant Physiol, 2000, 122(2): 415-424. doi: 10.1104/pp.122.2.415.
    [11] KOORNNEEF M, BENTSINK L, HILHORST H. Seed dormancy and germination[J]. Curr Opin Plant Biol, 2002, 5(1): 33–36. doi: 10.1016/S1369-5266(01)00219-9.
    [12] LEUBNER-METZGER G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways[J]. Planta, 2001, 213(5): 758–763. doi: 10.1007/s004250100542.
    [13] SULLIVAN J A, DENG X W. From seed to seed: The role of photoreceptors in Arabidopsis development[J]. Dev Biol, 2003, 260(2): 289–297. doi: 10.1016/S0012-1606(03)00212-4
    [14] KAMI C, LORRAIN S, HORNITSCHEK P, et al. Light-regulated plant growth and development[J]. Curr Top Dev Biol, 2010, 91: 29–66. doi: 10.1016/S0070-2153(10)91002-8.
    [15] BRIGGS W R, CHRISTIE J M. Phototropins 1 and 2: Versatile plant blue-light receptors[J]. Trends Plant Sci, 2002, 7(5): 204–210. doi: 10.1016/S1360-1385(02)02245-8.
    [16] CASHMORE A R, JARILLO J A, WU Y J, et al. Cryptochromes: Blue light receptors for plants and animals[J]. Science, 1999, 284(5415): 760–765. doi: 10.1126/science.284.5415.760.
    [17] SUETSUGU N, WADA M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: Phototropin, ZTL/FKF1/LKP2 and aureochrome[J]. Plant Cell Physiol, 2013, 54(1): 8–23. doi: 10.1093/pcp/pcs165.
    [18] VOITSEKHOVSKAJA O V. Phytochromes and other (photo)receptors of information in plants[J]. Russ J Plant Physiol, 2019, 66(3): 351–364. doi: 10.1134/S1021443719030154.
    [19] LI Z W, JIANG G X, LIU X C, et al. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripeningrelated genes in tomato[J]. New Phytol, 2020, 227(4): 1138–1156.
    [20] CHENG M C, KATHARE P K, PAIK I, et al. Phytochrome signaling networks[J]. Annu Rev Plant Biol, 2021, 72: 217–244. doi: 10.1146/annurev-arplant-080620-024221.
    [21] JING Y J, LIN R C. Transcriptional regulatory network of the light signaling pathways[J]. New Phytol, 2020, 227(3): 683–697. doi: 10.1111/nph.16602.
    [22] FRANKLIN K A, QUAIL P H. Phytochrome functions in Arabidopsis development[J]. J Exp Bot, 2010, 61(1): 11–24. doi: doi:10.1093/jxb/erp304.
    [23] QUAIL P H. An emerging molecular map of the phytochromes[J]. Plant Cell Environ, 1997, 20(6): 657–665. doi: 10.1046/j.1365-3040.1997.d01-108.x.
    [24] CLOUGH R C, VIERSTRA R D. Phytochrome degradation[J]. Plant Cell Environ, 1997, 20(6): 713–721. doi: 10.1046/j.1365-3040.1997. d01-107.x.
    [25] SHARROCK R A, CLACK T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes[J]. Plant Physiol, 2002, 130(1): 442–456. doi: 10.1104/pp.005389.
    [26] SHINOMURA T, NAGATANI A, CHORY J, et al. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A[J]. Plant Physiol, 1994, 104(2): 363–371. doi: 10.1104/pp.104.2.363.
    [27] LEE K P, PISKUREWICZ U, TUREČKOVÁ V, et al. Spatially and genetically distinct control of seed germination by phytochromes A and B[J]. Genes Dev, 2012, 26(17): 1984–1996.
    [28] MÉRAI Z, GRAEBER K, WILHELMSSON P, et al. Aethionema arabicum: A novel model plant to study the light control of seed germination[J]. J Exp Bot, 2019, 70(12): 3313–3328. doi: 10.1093/jxb/erz146.
    [29] KOUTSOVOULOU K, DAWS M I, THANOS C A. Campanulaceae: A family with small seeds that require light for germination[J]. Ann Bot, 2014, 113(1): 135–143. doi: 10.1093/aob/mct250.
    [30] BORTHWICK H A, HENDRICKS S B, PARKER M W, et al. A reversible photoreaction controlling seed germination[J]. Proc Natl Acad Sci USA, 1952, 38(8): 662–666. doi: 10.1073/pnas.38.8.662.
    [31] XU X S, PAIK I, ZHU L, et al. Illuminating progress in phytochromemediated light signaling pathways[J]. Trends Plant Sci, 2015, 20(10): 641–650. doi: 10.1016/j.tplants.2015.06.010.
    [32] OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(11): 3045–3058. doi: 10.1105/tpc.104.025163.
    [33] OH E, YAMAGUCHI S, KAMIYA Y, et al. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. Plant J, 2006, 47(1): 124–139. doi: 10.1111/j.1365-313X.2006.02773.x.
    [34] OH E, KANG H, YAMAGUCHI S, et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis[J]. Plant Cell, 2009, 21(2): 403–419. doi: 10.1105/tpc.108.064691.
    [35] DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development[J]. Annu Rev Plant Biol, 2016, 67(1): 513–537. doi: 10.1146/annurev-arplant-043015-112252.
    [36] KIM D H, YAMAGUCHI S, LIM S, et al. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5[J]. Plant Cell, 2008, 20(5): 1260–1277. doi: 10.1105/tpc.108.058859.
    [37] JIANG A L, GUO Z L, PAN J W, et al. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination[J]. Plant Cell, 2021, 33(5): 1506–1529. doi: 10.1093/plcell/koab060.
    [38] SHI H, ZHONG S W, MO X R, et al. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis[J]. Plant Cell, 2013, 25(10): 3770–3784. doi: 10.1105/tpc.113.117424.
    [39] SHI H, WANG X, MO X R, et al. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination[J]. Proc Natl Acad Sci USA, 2015, 112(12): 3817–3822. doi: 10.1073/pnas.1502405112.
    [40] YANG L W, JIANG Z M, JING Y J, et al. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis[J]. J Integr Plant Bioly, 2020, 62(9): 1372–1384. doi: 10.1111/jipb.12938.
    [41] LI Z L, SHEERIN D J, VON ROEPENACK-LAHAYE E, et al. The phytochrome interacting proteins ERF55 and ERF58 repress lightinduced seed germination in Arabidopsis thaliana[J]. Nat Commun, 2022, 13: 1656. doi: 10.1038/s41467-022-29315-3.
    [42] LU X D, ZHOU C M, XU P B, et al. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis[J]. Mol Plant, 2015, 8(3): 467–478. doi: 10.1016/j.molp.2014.11.025.
    [43] ZHU L, BU Q Y, XU X S, et al. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1[J]. Nat Commun, 2015, 6: 7245. doi: 10.1038/ncomms8245.
    [44] MAJEE M, KUMAR S, KATHARE P K, et al. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1[J]. Proc Natl Acad Sci USA, 2018, 115(17): E4120–E4129. doi: 10.1073/pnas.1711919115.
    [45] CHENG M C, ENDERLE B, KATHARE P K, et al. PCH1 and PCHL directly interact with PIF1, promote its degradation, and inhibit its transcriptional function during photomorphogenesis[J]. Mol Plant, 2020, 13(3): 499–514. doi: 10.1016/j.molp.2020.02.003.
    [46] LIU X C, YANG S G, ZHAO M L, et al. Transcriptional repression by histone deacetylases in plants[J]. Mol Plant, 2014, 7(5): 764–772. doi: 10.1093/mp/ssu033.
    [47] TESSADORI F, VAN ZANTEN M, PAVLOVA P, et al. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana[J]. PLoS Genet, 2009, 5(9): e1000638. doi: 10.1371/journal.pgen.1000638.
    [48] JANG I C, CHUNG P J, HEMMES H, et al. Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus[J]. Plant Cell, 2011, 23(2): 459–470. doi: 10.1105/tpc.110.080481.
    [49] GU D C, CHEN C Y, ZHAO M L, et al. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark[J]. Nucl Acid Res, 2017, 45(12): 7137-7150. doi: 10.1093/nar/gkx283.
    [50] CHO J N, RYU J Y, JEONG Y M, et al. Control of seed germination by light-induced histone arginine demethylation activity[J]. Dev Cell, 2012, 22(4): 736–748. doi: 10.1016/j.devcel.2012.01.024.
    [51] LEE N, KANG H, LEE D, et al. A histone methyltransferase inhibits seed germination by increasing PIF1 mRNA expression in imbibed seeds[J]. Plant J, 2014, 78(2): 282–293. doi: 10.1111/tpj.12467.
    [52] GU D C, JI R J, HE C M, et al. Arabidopsis histone methyltransferase SUVH5 is a positive regulator of light-mediated seed germination[J]. Front Plant Sci, 2019, 10: 841. doi: 10.3389/fpls.2019.00841.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王雅寒,刘勋成.光调控植物种子萌发分子机制研究进展[J].热带亚热带植物学报,2024,32(2):294~300

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 15,2022
  • Online: March 22,2024
  • Published: March 20,2024
Article QR Code