Effect of Mixed Proportions on Leaf Resource Acquisition Capability in Mixed Plantations of Eucalyptus and Native Trees
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Mixed-species plantations composed of Eucalyptus and native tree species have great potential in improving stand productivity and ecosystem functions. In this study, we investigated leaf physiological, structural and chemical traits of three dominant native tree species (Machilus chinensis, Cinnamomum burmannii and Manglietia glauca) and Eucalyptus urophylla in Eucalyptus monocultures (EM) and four mixtures of Eucalyptus (EU) and native trees species (NS) with different mixed proportions (EU:NS=5:5, 6:4, 7:3, 8:2, respectively) in south China. The results showed that there was substantial interspecific variation in leaf traits among four dominant tree species. On average, M. glauca had the highest SLA, PPUE, Amass, Tmass, Nmass and Pmass, indicating that M. glauca adopts resource acquisition strategies. E. urophylla had the lowest SLA, PPUE, Amass, Tmass, Nmass, Pmass but the highest PNUE, indicating that E. urophylla occupies characteristics typical of fast-growing and nutrient-conserving in order to adapt nutrient-poor environments. There was nearly no overlap between M. glauca and E. urophylla in leaf traits, such as SLA, N:P, Amass, Tmass, PPUE and Nmass, indicating that M. glauca and E. urophylla were highly complementary in the leaf resource use. Manglietia glauca may be an ideal candidate tree species for establishing mixed plantations of Eucalyptus and native tree species. At the species level, Nmass of M. glauca, Pmass of M. chinensis, Amass and PPUE of C. burmannii in dry season increased with the mixed proportion of native species, but leaf traits of four dominant tree species were generally not affected by the mixed proportion as a whole. At the stand level, SLA, PPUE, Amass, Tmass and N:P in mixtures of Eucalyptus and native species were significantly higher than those in Eucalyptus monocultures. Thus, plantations established with Eucalyptus and high diversity native tree species can improve the light capture and photosynthetic capability from the stand level, but also aggravate the phosphorus limitation of plant growth. Overall, it was suggested that native species with complementary resource use to Eucalyptus and capability of optimizing phosphorus biogeochemical cycle of mixed plantations should be prioritized in designing and improving the Eucalyptus plantations in south China.

    Reference
    [1] PBOYLE J R, WINJUM J K, KAVANAGH K, et al. Planted Forests: Contributions to the Quest for Sustainable Societies[M]. Dordrecht: Kluwer Academic Publishers, 1999.
    [2] LUO S M, HE D J, XIE Y L, et al. Effect of stand density on community structure and ecological effect of Eucalyptus urophylta×E. eamalducensis plantation[J]. J Trop Subtrop Bot, 2010, 18(4): 357-363.[罗素梅, 何东进, 谢益林, 等. 林分密度对尾赤桉人工林群落结构与生态效应的影响研究[J]. 热带亚热带植物学报, 2010, 18(4): 357-363. doi: 10.3969/j.issn.1005-3395.2010.04.003.]
    [3] WILLIAMS R A. Mitigating biodiversity concerns in Eucalyptus plantations located in south China[J]. J Biosci Med, 2015, 3(6): 1-8. doi: 10.4236/jbm.2015.36001.
    [4] BRANCALION P H S, AMAZONAS N T, CHAZDON R L, et al. Exotic eucalypts: From demonized trees to allies of tropical forest restoration?[J]. J Appl Ecol, 2020, 57(1): 55-66. doi: 10.1111/1365-2664.13513.
    [5] ZHOU X G, ZHU H G, WEN Y G, et al. Intensive management and declines in soil nutrients lead to serious exotic plant invasion in Eucalyptus plantations under successive short-rotation regimes[J]. Land Degrad Dev, 2020, 31(3): 297-310. doi: 10.1002/ldr.3449.
    [6] BAUHUS J, VAN WINDEN A P, NICOTRA A B. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus[J]. Can J For Res, 2004, 34(3): 686-694. doi: 10.1139/X03-243.
    [7] ZHANG H, GUAN D S, SONG M W. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, south China[J]. For Ecol Manage, 2012, 277: 90-97. doi: 10.1016/j.foreco. 2012.04.016.
    [8] FORRESTER D I, BAUHUS J, COWIE A L. Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii[J]. Can J For Res, 2005, 35(12): 2942-2950. doi: 10.1139/X05-214.
    [9] SANTOS F M, CHAER G M, DINIZ A R, et al. Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil[J]. For Ecol Manage, 2017, 384: 110-121. doi: 10. 1016/j.foreco.2016.10.041.
    [10] MONTAGNINI F. Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland[J]. For Ecol Manage, 2000, 134(1-3): 257-270. doi: 10.1016/S0378-1127(99)00262-5.
    [11] SCHERER-LORENZEN M, KÖRNER C, SCHULZE E D. Forest Diversity and Function: Temperate and Boreal Systems[M]. Berlin: Springer-Verlag, 2005.
    [12] KELTY M J. The role of species mixtures in plantation forestry[J]. For Ecol Manage, 2006, 233(2/3): 195-204. doi: 10.1016/j.foreco.2006.05. 011.
    [13] MILLAR C I, STEPHENSON N L, STEPHENS S L, et al. Climate change and forests of the future: Managing in the face of uncertainty[J]. Ecol Appl, 2007, 17(8): 2145-2151. doi: 10.1890/06-1715.1.
    [14] FELTON A, NILSSON U, SONESSON J, et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden[J]. Ambio, 2016, 45(2): 124-139. doi: 10.1007/s13280-015-0749-2.
    [15] LARSEN J B, NIELSEN A B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice[J]. For Ecol Manage, 2007, 238(1/2/3): 107-117. doi: 10. 1016/j.foreco.2006.09.087.
    [16] AMAZONAS N T, FORRESTER D I, OLIVEIRA R S, et al. Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability[J]. For Ecol Manage, 2018, 418: 34-40. doi: 10.1016/j.foreco.2017. 12.006.
    [17] REICH P B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto[J]. J Ecol, 2014, 102(2): 275-301. doi: 10.1111/1365-2745.12211.
    [18] LIU X J, MA K P. Plant functional traits-concepts, applications and future directions[J]. Sci Sin Vitae, 2015, 45(4): 325-339.[刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339. doi: 10.1360/N052014-00244.]
    [19] MCDOWELL N, ALLEN C D, ANDERSON-TEIXEIRA K, et al. Drivers and mechanisms of tree mortality in moist tropical forests[J]. New Phytol, 2018, 219(3): 851-869. doi: 10.1111/nph.15027.
    [20] KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585): 204-207. doi: 10.1038/nature16476.
    [21] ROA-FUENTES L L, TEMPLER P H, CAMPO J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico[J]. Oecologia, 2015, 179(2): 585-597. doi: 10.1007/s00442-015-3354-y.
    [22] CHEN C, CHEN H Y H, CHEN X L. Functional diversity enhances, but exploitative traits reduce tree mixture effects on microbial biomass[J]. Funct Ecol, 2020, 34(1): 276-286. doi: 10.1111/1365-2435.13459.
    [23] ROSENFIELD M V, KELLER J K, CLAUSEN C, et al. Leaf traits can be used to predict rates of litter decomposition[J]. Oikos, 2020, 129(10): 1589-1596. doi: 10.1111/oik.06470.
    [24] WANG Q, PAN P, OUYANG X Z, et al. Intraspecific and interspecific competition intensity in mixed plantation with different proportion of Pinus massoniana and Schima superba[J]. Chin J Ecol, 2021, 40(1): 49-57.[汪清, 潘萍, 欧阳勋志, 等. 马尾松-木荷不同比例混交林种内和种间竞争强度[J]. 生态学杂志, 2021, 40(1): 49-57. doi: 10. 13292/j.1000-4890.202101.016.]
    [25] SANTOS, MARTINI F, BALIEIRO, et al. Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil[J]. For Ecol Manage, 2016, 363: 86-97. doi: 10.1016/j.foreco.2015.12.028.
    [26] DEL RÍO, PRETZSCH M, ALBERDI H, et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives[J]. Eur J For Res, 2016, 135(1): 23-49. doi: 10.1007/s10342-015-0927-6.
    [27] ZHA M Q, CHENG X R, YU M K, et al. Effects of mixing proportion on functional traits of Cunninghumia lanceolata and Zelkova schneideriana seedling[J]. Acta Ecol Sin, 2021, 41(21): 8556-8567.[查美琴, 成向荣, 虞木奎, 等. 不同混交比例对杉木和大叶榉幼苗功能性状的影响[J]. 生态学报, 2021, 41(21): 8556-8567. doi: 10.5846/stxb 202007311999.]
    [28] WANG J, REN H, YANG L, et al. Establishment and early growth of introduced indigenous tree species in typical plantations and shrubland in south China[J]. For Ecol Manage, 2009, 258(7): 1293-1300. doi: 10. 1016/j.foreco.2009.06.022.
    [29] DONG M. Survey, Observation and Analysis of Terrestrial Biocommunities[M]. Beijing: Standards Press of China, 1997.[董鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997.]
    [30] HAN T T, REN H, WANG J, et al. Variations of leaf eco-physiological traits in relation to environmental factors during forest succession[J]. Ecol Indic, 2020, 117: 106511. doi: 10.1016/j.ecolind.2020.106511.
    [31] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2): 485-496. doi: 10.1111/j.1469-8137.2005.01349.x.
    [32] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. doi: 10. 1038/nature02403.
    [33] POORTER L, WRIGHT S J, PAZ H, et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests[J]. Ecology, 2008, 89(7): 1908-1920. doi: 10.1890/07-0207.1.
    [34] PAINE C E T, AMISSAH L, AUGE H, et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why[J]. J Ecol, 2015, 103(4): 978-989. doi: 10.1111/1365-2745.12401.
    [35] GIBERT A, GRAY E F, WESTOBY M, et al. On the link between functional traits and growth rate: Meta-analysis shows effects change with plant size, as predicted[J]. J Ecol, 2016, 104(5): 1488-1503. doi: 10.1111/1365-2745.12594.
    [36] GIVNISH T J. Plant stems: Biomechanical adaptation for energy capture and influence on species distributions[M]//GARTNER B L. Plant Stems Physiology and Functional Morphology. San Diego: Academic Press, 1995.
    [37] KING D A. Size-related changes in tree proportions and their potential influence on the course of height growth[M]//MEINZER F C, LACHENBRUCH B, DAWSON T E. Size- and Age-Related Changes in Tree Structure and Function. Dordrecht: Springer, 2011.
    [38] RICHARDS A E, FORRESTER D I, BAUHUS J, et al. The influence of mixed tree plantations on the nutrition of individual species: A review[J]. Tree Physiol, 2010, 30(9): 1192-1208. doi: 10.1093/tree phys/tpq035.
    [39] PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(3): 167-234. doi: 10.1071/BT12225.
    [40] FORRESTER D I, BAUHUS J, COWIE A L, et al. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review[J]. For Ecol Manage, 2006, 233(2/3): 211-230. doi: 10.1016/j.foreco.2006. 05.012.
    [41] AMAZONAS N T, FORRESTER D I, SILVA C C, et al. High diversity mixed plantations of Eucalyptus and native trees: An interface between production and restoration for the tropics[J]. For Ecol Manage, 2018, 417: 247-256. doi: 10.1016/j.foreco.2018.03.015.
    [42] AMAZONAS N T, FORRESTER D I, SILVA C C, et al. Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species[J]. New For, 2021, 52(5): 807-828. doi: 10.1007/s11056-020-09826-x.
    [43] LONG J. Evaluation of leaf nutrient resorption efficiency under mixed Eucalyptus and native trees plantations with different established proportions[D]. Beijing: University of Chinese Academy of Sciences, 2022.[龙靖. 不同比例桉树-乡土树种混交林叶片养分再吸收效率评价[D]. 北京: 中国科学院大学, 2022.]
    [44] KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. J Appl Ecol, 1996, 33(6): 1441-1450. doi: 10.2307/2404783.
    [45] CAMPO J, GALLARDO J F, HERNÁNDEZ G. Leaf and litter nitrogen and phosphorus in three forests with low P supply[J]. Eur J For Res, 2014, 133(1): 121-129. doi: 10.1007/s10342-013-0748-4.
    [46] YAN K, DUAN C Q, FU D G, et al. Leaf nitrogen and phosphorus stoichiometry of plant communities in geochemically phosphorus- enriched soils in a subtropical mountainous region, SW China[J]. Environ Earth Sci, 2015, 74(5): 3867-3876. doi: 10.1007/s12665-015-4519-z.
    [47] LI M, HUANG C H, YANG T X, et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots[J]. Plant Soil, 2019, 445(1/2): 231-242. doi: 10.1007/s11104-019-04288-3.
    [48] HOOPER D U, CHAPIN F S, EWEL J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge[J]. Ecol Monogr, 2005, 75(1): 3-35. doi: 10.1890/04-0922.
    [49] FORRESTER D I, BAUHUS J. A review of processes behind diversity- productivity relationships in forests[J]. Curr For Rep, 2016, 2(1): 45-61. doi: 10.1007/s40725-016-0031-2.
    [50] SIDDIQUE I, ENGEL V L, PARROTTA J A, et al. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years[J]. Biogeochemistry, 2008, 88(1): 89-101. doi: 10.1007/s10533-008-9196-5.
    Cited by
Get Citation

龙靖,何小芳,陆宏芳,刘楠,林永标,杨龙,王俊.混交比例对桉树-乡土树种混交林优势树种叶片资源获取性状的影响[J].热带亚热带植物学报,2024,32(1):27~36

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 02,2022
  • Online: January 26,2024
  • Published: January 20,2024
Article QR Code