Comparative Analysis of Leaf Traits of Evergreen Broad-leaved Forest Tree Species from Different Elevations in Lower-subtropical Region
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [59]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The subtropical zonal vegetation is monsoon evergreen broad-leaved forest (altitude 300-600 m, monsoon forest), and the mountain evergreen broad-leaved forest (mountain forest) is distributed in the middle mountains (1 000-1 500 m). The ecological value of mountain forest has been paid more and more attention, but the environmental adaptability of its tree species is still not well understood. Based on fixed plots of typical mountain forest (Daming Mountain, Guangxi) and monsoon forest (Dinghu Mountain, Guangdong) in south subtropical region, leaf morphological and anatomical characteristics, mechanical strength and hydraulic properties of 57 representative tree species were measured, and leaf traits and correlation of various traits of evergreen broad-leaved forest species at different elevations were compared. The results showed that compared with monsoon forest species, the leaves of mountain forest species were thicker, the specific leaf area was smaller, and the mechanical strength was higher, which was conducive to improving the adaptability to winter freezing in the mountains at higher altitude. Under extreme hot-dry weather in 2022 summer, leaf water potential and hydraulic safety margin were significantly lower in the low-elevation forest than those in the high-elevation forest. However, leaf hydraulic safety margins were positive for most studied tree species and showed large inter-specific variations, indicating a low hydraulic risk in subtropical evergreen broadleaved forests. Leaf traits networks differed between the two forests. There was no tradeoff relationship between leaf hydraulic security and efficiency in mountain forest, while the correlation between leaf economic traits (such as specific leaf area) and other indexes was weak in monsoon forest. Based on leaf traits, the differences and diversity of adaptive strategies of evergreen broad-leaved forest species at different elevations in south subtropical region were revealed.

    Reference
    [1] KONG G H, HUANG Z L, ZHANG Q M, et al. Type, structure, dynamics and management of the lower subtropical evergreen broadleaved forest in the Dinghushan Biosphere Reserve of China[J]. Tropics, 1996, 6(4): 335–350. doi: 10.3759/tropics.6.335.
    [2] MO J M, BROWN S, PENG S L, et al. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China[J]. For Ecol Manage, 2003, 175(1–3): 573–583. doi: 10.1016/S0378-1127(02) 00220-7.
    [3] SONG Y C. Evergreen Broad-Leaved Forests in China[M]. Beijing: Science Press, 2013.[宋永昌. 中国常绿阔叶林[M]. 北京: 科学出版社, 2013.]
    [4] ZOU S, ZHOU G Y, ZHANG Q M, et al. Long-term (1992—2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve[J]. Chin J Plant Ecol, 2018, 42(4): 442–452.[邹顺, 周国逸, 张倩媚, 等. 1992—2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442–452.10.17521/cjpe.2017.0171.]
    [5] ZHU H. Discussion on the origin of mid-montane wet evergreen broad-leaved forest in Yunnan[J]. Plant Sci J, 2016, 34(5): 715–723.[朱华. 云南中山湿性常绿阔叶林起源的探讨[J]. 植物科学学报, 2016, 34(5): 715–723. doi: 10.11913/PSJ.2095-0837.2016.50715.]
    [6] ZHU H, ZHOU S S, YAN L C, et al. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China[J]. Bot Rev, 2019, 85(2): 131–148. doi: 10.1007/s12229-019-09210-1.
    [7] FENG H F, LIU L Y, XUE L. Effects of nitrogen and phosphorus additions and stand density on soil chemical property in Acacia auriculiformis stands[J]. Chin J Plant Ecol, 2019, 43(11): 1010–1020.[冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010–1020. doi: 10.17521/cjpe.2019.0168.]
    [8] PENG Y, LI Y J, SONG S Y, et al. Nitrogen addition slows litter decomposition accompanied by accelerated manganese release: A five-year experiment in a subtropical evergreen broadleaf forest[J]. Soil Biol Biochem, 2022, 165: 108511. doi: 10.1016/j.soilbio.2021.108511.
    [9] TAN Z H, ZHANG Y P, LIANG N S, et al. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests[J]. Environ Res Lett, 2012, 7(4): 044017. doi: 10.1088/1748-9326/7/4/044017.
    [10] ZHANG Y J, YANG Q Y, LEE D W, et al. Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests[J]. Oecologia, 2013, 173(3): 721–730. doi: 10.1007/s00442-013-2672-1.
    [11] CRISTIANO P M, MADANES N, CAMPANELLO P I, et al. High NDVI and potential canopy photosynthesis of South American subtropical forests despite seasonal changes in leaf area index and air temperature[J]. Forests, 2014, 5(2): 287–308. doi: 10.3390/f5020287.
    [12] YU G R, CHEN Z, PIAO S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proc Natl Acad Sci USA, 2014, 111(13): 4910–4915. doi: 10.1073/pnas. 1317065111.
    [13] BLACKMAN C J, BRODRIBB T J, JORDAN G J. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2012, 168(1): 1–10. doi: 10.1007/s00442-011-2064-3.
    [14] NARDINI A, PEDÀ G, LA ROCCA N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytol, 2012, 196(3): 788–798. doi: 10.1111/j.1469-8137.2012.04294.x.
    [15] BLACKMAN C J, GLEASON S M, CHANG Y, et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates[J]. Ann Bot, 2014, 114(3): 435-440. doi: 10.1093/aob/mcu131.
    [16] SONG L L, FAN J W, WU S H. Research advances on changes of leaf traits along an altitude gradient[J]. Prog Geogr, 2011, 30(11): 1431-1439.[宋璐璐, 樊江文, 吴绍洪. 植物叶片性状沿海拔梯度变化研究进展[J]. 地理科学进展, 2011, 30(11): 1431–1439. doi: 10.11820/dlkxjz.2011.11.014.]
    [17] KAO W Y, CHANG K W. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan[J]. Aust J Bot, 2001, 49(4): 509–514. doi: 10.1071/BT00028.
    [18] PETTER G, WAGNER K, WANEK W, et al. Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra‐ and interspecific trait variability, and taxonomic signals[J]. Funct Ecol, 2016, 30(2): 188–198. doi: 10.1111/1365-2435.12490.
    [19] CAO K F, CHANG J. The ecological effects of an unusual climatic disaster: The destruction to forest ecosystems by the extremely heavy glaze and snow storms occurred in early 2008 in southern China[J]. Chin J Plant Ecol, 2010, 34(2): 123–124.[曹坤芳, 常杰. 突发气象灾害的生态效应: 2008年中国南方特大冰雪灾害对森林生态系统的破坏[J]. 植物生态学报, 2010, 34(2): 123–124. doi: 10.3773/j.issn. 1005-264x.2010.02.002.]
    [20] WU K K, PENG S L, CHEN L Y, et al. Characteristics of forest damage induced by frozen rain and snow in South China: A review[J]. Chin J Ecol, 2011, 30(3): 611–620.[吴可可, 彭少麟, 陈蕾伊, 等. 南方森林雨雪冰冻灾害的特征[J]. 生态学杂志, 2011, 30(3): 611–620. doi: 10.13292/j.1000-4890.2011.0092.]
    [21] ONODA Y, WESTOBY M, ADLER P B, et al. Global patterns of leaf mechanical properties[J]. Ecol Lett, 2011, 14(3): 301–312. doi: 10.1111/j.1461-0248.2010.01582.x.
    [22] ARMANI M, GOODALE U M, CHARLES-DOMINIQUE T, et al. Structural defence is coupled with the leaf economic spectrum across saplings of spiny species[J]. Oikos, 2020, 129(5): 740–752. doi: 10.1111/oik.06960.
    [23] ZHAO P, SUN G C, NI G Y, et al. Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis[J]. Chin J Appl Ecol, 2013, 24(1): 49–56.[赵平, 孙谷畴, 倪广艳, 等. 成熟马占相思水力导度对水分利用和光合响应的季节性差异[J]. 应用生态学报, 2013, 24(1): 49-56. doi: 10.13287/j.1001-9332.2013.0126.]
    [24] QI J H, ZHANG Y J, ZHANG Y P, et al. The influence of changes in water availability on seedling mortality of a subtropical evergreen broadleaf forest on Ailao Mountain[J]. Acta Ecol Sin, 2015, 35(8): 2521–2528.[杞金华, 章永江, 张一平, 等. 水分条件变化对哀牢山亚热带常绿阔叶林林下幼苗死亡率的影响[J]. 生态学报, 2015, 35(8): 2521–2528. doi: 10.5846/stxb201306101572.]
    [25] WU J E, ZENG H H, ZHAO F, et al. Plant hydrological niches become narrow but stable as the complexity of interspecific competition increases[J]. Agric For Meteorol, 2022, 320: 108953. doi: 10.1016/j.agrformet.2022.108953.
    [26] CHOAT B, BRODRIBB T J, BRODERSEN C R, et al. Triggers of tree mortality under drought[J]. Nature, 2018, 558(7711): 531–539. doi: 10.1038/s41586-018-0240-x.
    [27] MCDOWELL N G, BRODRIBB T J, NARDINI A. Hydraulics in the 21st century[J]. New Phytol, 2019, 224(2): 537–542. doi: 10.1111/nph.16151.
    [28] NARDINI A, CASOLO V, DAL BORGO A, et al. Rooting depth, water relations and non‐structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought[J]. Plant Cell Environ, 2016, 39(3): 618–627. doi: 10.1111/pce. 12646.
    [29] ZHU S D, CHEN Y J, FU P L, et al. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability[J]. Tree Physiol, 2017, 37(11): 1469–1477. doi: 10.1093/treephys/tpx094.
    [30] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752–755. doi: 10.1038/nature11688.
    [31] ZHU S D, CHEN Y J, YE Q, et al. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits[J]. Tree Physiol, 2018, 38(5): 658–663. doi: 10.1093/treephys/tpy013.
    [32] HUANG Y, WANG B, YAN L M, et al. Observations on the spatial and temporal patterns of amphibian diversity in Damingshan, Guangxi[J]. J Ecol Rural Environ, 2020, 36(8): 968–974.[黄勇, 王波, 颜琳妙, 等. 广西大明山两栖动物多样性时空格局观测[J]. 生态与农村环境学报, 2020, 36(8): 968–974. doi: 10.19741/j.issn.1673-4831.2020.0129.]
    [33] WANG W, HUANG J, YIN Q L. Physicochemical properties of soils and their systematic classification in the vertical zone of Damingshan in Guangxi[J]. J Zhejiang Agric Sci, 2016, 57(9): 1548–1554.[王薇, 黄景, 银秋玲. 广西大明山垂直带土壤理化性质及其系统分类[J]. 浙江农业科学, 2016, 57(9): 1548–1554. doi: 10.16178/j.issn.0528-9017.20160953.]
    [34] ZHANG R Y, LI Y P, NI Y L, et al. Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiv Sci, 2019, 27(12): 1279-1290.[张入匀, 李艳朋, 倪云龙, 等. 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异[J]. 生物多样性, 2019, 27(12): 1279–1290. doi: 10.17520/biods.2019267.]
    [35] SHAO Y J, YU M X, JIANG J, et al. Status and dynamic of soil C, N and P of three forest succession gradient in Dinghushan[J]. J Trop Subtrop Bot, 2017, 25(6): 523–530.[邵宜晶, 俞梦笑, 江军, 等. 鼎湖山3种演替阶段森林土壤C、N、P现状及动态[J]. 热带亚热带植物学报, 2017, 25(6): 523–530. doi: 10.11926/jtsb.3748.]
    [36] DÍAZ S, HODGSON J G, THOMPSON K, et al. The plant traits that drive ecosystems: Evidence from three continents[J]. J Veg Sci, 2004, 15(3): 295–304. doi: 10.1658/1100-9233(2004)015[0295:TPTTDE]2.0. CO;2.
    [37] YAO G Q, NIE Z F, TURNER N C, et al. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation[J]. New Phytol, 2021, 229(1): 230–244. doi: 10.1111/nph.16845.
    [38] BARTLETT M K, SCOFFONI C, SACK L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis[J]. Ecol Lett, 2012, 15(5): 393–405. doi: 10.1111/j.1461-0248.2012.01751.x.
    [39] SACK L, SCOFFONI C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytol, 2013, 198(4): 983–1000. doi: 10.1111/nph. 12253.
    [40] ZHU S D, LI R H, HE P C, et al. Large branch and leaf hydraulic safety margins in subtropical evergreen broadleaved forest[J]. Tree Physiol, 2019, 39(8): 1405–1415. doi: 10.1093/treephys/tpz028.
    [41] WANG Y Q, NI M Y, ZENG W H, et al. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species[J]. Ann Bot, 2021, 128(2): 183–191. doi: 10.1093/AOB/MCAB055.
    [42] LI Y, LIU C C, XU L, et al. Leaf trait networks based on global data: Representing variation and adaptation in plants[J]. Front Plant Sci, 2021, 12: 710530. doi: 10.3389/FPLS.2021.710530.
    [43] SMALLWOOD M, BOWLES D J. Plants in a cold climate[J]. Philos Trans Roy Soc B: Biol Sci, 2002, 357(1423): 831–847. doi: 10.1098/rstb.2002.1073.
    [44] CHEN K T, RENAUT J, SERGEANT K, et al. Proteomic changes associated with freeze-thaw injury and post-thaw recovery in onion (Allium cepa L.) scales[J]. Plant Cell Environ, 2013, 36(4): 892–905. doi: 10.1111/pce.12027.
    [45] SCHULZE E D, BECK E, MÜLLER-HOHENSTEIN K. Plant Ecology[M]. Berlin: Springer, 2005.
    [46] WANG F, CHENG X M, XIAO Y L, et al. Adaptation of leaf anatomical structure and stoichiometric characteristics of wild ancient tea tree to different altitudes in Qianjiazhai[J]. Chin J Ecol, 2021, 40(7): 1958–1968.[王菲, 程小毛, 肖云龙, 等. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应[J]. 生态学杂志, 2021, 40(7): 1958–1968. doi: 10.13292/j.1000-4890.202107.034.]
    [47] TENG Y, LI A D, HAO Z Y, et al. Anatomical structure of Passiflora caerulea L. and relationship between leaf structure and cold resistance under low temperature stress[J]. Acta Agric Zhejiang, 2018, 30(11): 1849–1858.[滕尧, 李安定, 郝自远, 等. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报, 2018, 30(11): 1849–1858. doi: 10.3969/j.issn.1004-1524.2018.11.07.]
    [48] YAO G Q, WEI Y, BI M H, et al. Relationship between leaf vein density and the lowest water potential under drought stress in four Caragana species[J]. J Desert Res, 2018, 38(6): 1252–1258.[姚广前, 魏阳, 毕敏慧, 等. 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系[J]. 中国沙漠, 2018, 38(6): 1252–1258. doi: 10.7522/j.issn. 1000-694X.2017.00089.]
    [49] WANG X F, LI R Y, LI X Z, et al. Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern[J]. Sci China Earth Sci, 2014, 57(4): 662–670.[王学芳, 李瑞云, 李孝泽, 等. 祁连山3种被子植物叶特征随海拔变化及其内陆高海拔模式[J]. 中国科学: 地球科学, 2014, 44(4): 706–714. doi: 10.1007/s11430-013-4766-3.]
    [50] DUAN H L, LI Y Y, XU Y, et al. Contrasting drought sensitivity and post-drought resilience among three co-occurring tree species in subtropical China[J]. Agric Forest Meteorol, 2019, 272–273: 55–68. doi: 10.1016/j.agrformet.2019.03.024.
    [51] HE P C, LIAN J Y, YE Q, et al. How do functional traits influence tree demographic properties in a subtropical monsoon forest?[J]. Funct Ecol, 2022, 36(12): 3200–3210. doi: 10.1111/1365-2435.14189.
    [52] ANDEREGG W R L, KONINGS A G, TRUGMAN A T, et al. Hydraulic diversity of forests regulates ecosystem resilience during drought[J]. Nature, 2018, 561(7724): 538–541. doi: 10.1038/s41586-018-0539-7.
    [53] HE P C, WRIGHT I J, ZHU S D, et al. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements[J]. New Phytol, 2019, 223(2): 607–618. doi: 10.1111/nph.15803.
    [54] MÉNDEZ-ALONZO R, EWERS F W, JACOBSEN A L, et al. Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs[J]. Trees, 2019, 33(2): 507–519. doi: 10.1007/s00468-018-1796-7.
    [55] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant, Cell Environ, 2013, 36(4): 879–891. doi: 10.1111/pce.12024.
    [56] LI L, MCCORMACK M L, MA C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9): 899–906. doi: 10.1111/ele.12466.
    [57] SANCHEZ-MARTINEZ P, MARTÍNEZ-VILALTA, DEXTER K G, et al. Adaptation and coordinated evolution of plant hydraulic traits[J]. Ecol Lett, 2020, 23(11): 1599–1610. doi: 10.1111/ele.13584.
    [58] REICH P B, WRIGHT I J, CAVENDER-BARES J, et al. The evolution of plant functional variation: Traits, spectra, and strategies[J]. Int J Plant Sci, 2003, 164(S3): S143–S164. doi: 10.1086/374368.
    [59] SACK L, COWAN P D, JAIKUMAR N, et al. The ‘hydrology’ of leaves: Co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8): 1343–1356. doi: 10.1046/j. 0016-8025.2003.01058.x.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黄昶吟,张峰,朱师丹.南亚热带不同海拔常绿阔叶林树种叶性状的比较分析[J].热带亚热带植物学报,2024,32(2):151~160

Copy
Share
Article Metrics
  • Abstract:312
  • PDF: 553
  • HTML: 303
  • Cited by: 0
History
  • Received:October 09,2022
  • Online: March 22,2024
  • Published: March 20,2024
Article QR Code