Research Progress of Phytochrome A in Regulating Light-responsive Gene Expression and Its Post-translational Modifications
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [68]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Light is one of the most important critical factors that regulate plant growth and development. Photoreceptors perceive the changes in light intensity, direction and photoperiod to regulate the entire lifecycle of plants further. Phytochrome A (PHYA) is the unique far-red light receptor in plants. PHYA is synthesized in the cytosol in the dark; upon light illumination, PHYA is translocated into the nucleus and degraded rapidly. PHYA precisely regulates the transcription network via multiple pathways. Furthermore, post-translational modifications have been shown to play an essential role in modulating the stability and activity of PHYA. The research progress on PHYA-mediated transcription and post-translational modifications of PHYA were summarized, and the application prospects of PHYA in molecular design breeding in crops were also discuss.

    Reference
    [1] JIAO Y L, LAU O S, DENG X W. Light-regulated transcriptional networks in higher plants[J]. Nat Rev Genet, 2007, 8(3): 217-230. doi: 10. 1038/nrg2049.
    [2] GALVÃO V C, FANKHAUSER C. Sensing the light environment in plants: Photoreceptors and early signaling steps[J]. Curr Opin Neurobiol, 2015, 34: 46-53. doi: 10.1016/j.conb.2015.01.013.
    [3] WANG Q, LIN C T. Mechanisms of cryptochrome-mediated photoresponses in plants[J]. Annu Rev Plant Biol, 2020, 71: 103-129. doi: 10.1146/annurev-arplant-050718-100300.
    [4] ZHOU Y Y, YANG L, DUAN J, et al. Hinge region of Arabidopsis phyA plays an important role in regulating phyA function[J]. Proc Natl Acad Sci U S A, 2018, 115(50): E11864-E11873. doi: 10.1073/pnas.1813162115.
    [5] KIRCHER S, KOZMA-BOGNAR L, KIM L, et al. Light quality- dependent nuclear import of the plant photoreceptors phytochrome A and B[J]. Plant Cell, 1999, 11(8): 1445-1456. doi: 10.1105/tpc.11.8. 1445.
    [6] KIM L, KIRCHER S, TOTH R, et al. Light-induced nuclear import of phytochrome-A: GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis[J]. Plant J, 2000, 22(2): 125-133. doi: 10.1046/j.1365-313x.2000.00729.x.
    [7] SHEERIN D J, MENON C, ZUR OVEN-KROCKHAUS S, et al. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex[J]. Plant Cell, 2015, 27(1): 189-201. doi: 10.1105/tpc.114.134775.
    [8] AL-SADY B, NI W M, KIRCHER S, et al. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome- mediated degradation[J]. Mol Cell, 2006, 23(3): 439-446. doi: 10. 1016/j.molcel.2006.06.011.
    [9] CHEN F, LI B S, LI G, et al. Arabidopsis phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways[J]. Plant Cell, 2014, 26(5): 1949-1966. doi: 10.1105/TPC.114.123950.
    [10] JENSEN O N. Interpreting the protein language using proteomics[J]. Nat Rev Mol Cell Biol, 2006, 7(6): 391-403. doi: 10.1038/nrm1939
    [11] ZHANG S M, LI C, ZHOU Y Y, et al. TANDEM ZINC-FINGER/PLUS3 is a key component of phytochrome a signaling[J]. Plant Cell, 2018, 30(4): 835-852. doi: 10.1105/tpc.17.00677.
    [12] AGUILAR-HERNÁNDEZ V, KIM D Y, STANKEY R J, et al. Mass spectrometric analyses reveal a central role for ubiquitylation in remodeling the Arabidopsis proteome during photomorphogenesis[J]. Mol Plant, 2017, 10(6): 846-865. doi: 10.1016/j.molp.2017.04.008.
    [13] RATTANAPISIT K, CHO M H, BHOO S H. Lysine 206 in Arabidopsis phytochrome A is the major site for ubiquitin-dependent protein degradation[J]. J Biochem, 2016, 159(2): 161-169. doi: 10.1093/jb/mvv085.
    [14] WANG Q, ZUO Z C, WANG X, et al. Photoactivation and inactivation of Arabidopsis cryptochrome 2[J]. Science, 2016, 354(6310): 343-347. doi: 10.1126/science.aaf9030.
    [15] LIN C T, YANG H Y, GUO H W, et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor crypto- chrome 2[J]. Proc Natl Acad Sci U S A, 1998, 95(5): 2686-2690. doi: 10.1073/pnas.95.5.2686.
    [16] SULLIVAN S, WAKSMAN T, PALIOGIANNI D, et al. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding[J]. Nat Commun, 2021, 12: 6129. doi: 10.1038/s41467-021-26333-5.
    [17] LI J G, LI G, WANG H Y, et al. Phytochrome signaling mechanisms[J]. Arabidopsis Book, 2011, 9: e0148. doi: 10.1199/tab.0148.
    [18] QUAIL P H. An emerging molecular map of the phytochromes[J]. Plant Cell Environ, 1997, 20(6): 657-665. doi: 10.1046/j.1365-3040. 1997.d01-108.x.
    [19] FANKHAUSER C. The phytochromes, a family of red/far-red absorbing photoreceptors[J]. J Biol Chem, 2001, 276(15): 11453-11456. doi: 10.1074/jbc.R100006200.
    [20] NAGATANI A. Light-regulated nuclear localization of phytochromes[J]. Curr Opin Plant Biol, 2004, 7(6): 708-711. doi: 10.1016/j.pbi.2004. 09.010.
    [21] ROCKWELL N C, SU Y S, LAGARIAS J C. Phytochrome structure and signaling mechanisms[J]. Annu Rev Plant Biol, 2006, 57: 837-858. doi: 10.1146/annurev.arplant.56.032604.144208.
    [22] QUAIL P H. Phytochrome photosensory signalling networks[J]. Nat Rev Mol Cell Biol, 2002, 3(2): 85-93. doi: 10.1038/nrm728.
    [23] TERRY M J, MCDOWELL M T, LAGARIAS J C. (3Z)- and (3E)- phytochromobilin are intermediates in the biosynthesis of the phyto- chrome chromophore[J]. J Biol Chem, 1995, 270(19): 11111-11118. doi: 10.1074/jbc.270.19.11111.
    [24] REED J W, NAGATANI A, ELICH T D, et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development[J]. Plant Physiol, 1994, 104(4): 1139-1149. doi: 10.1104/pp.104.4.1139.
    [25] DEHESH K, FRANCI C, PARKS B M, et al. Arabidopsis HY8 locus encodes phytochrome A[J]. Plant Cell, 1993, 5(9): 1081-1088. doi: 10.1105/tpc.5.9.1081.
    [26] NAGATANI A, REED J W, CHORY J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A[J]. Plant Physiol, 1993, 102(1): 269-277. doi: 10.1104/pp.102.1.269.
    [27] WHITELAM G C, JOHNSON E, PENG J, et al. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light[J]. Plant Cell, 1993, 5(7): 757-768. doi: 10.1105/tpc.5.7.757.
    [28] NEFF M M, CHORY J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development[J]. Plant Physiol, 1998, 118(1): 27-35. doi: 10.1104/pp.118.1.27.
    [29] GENOUD T, SCHWEIZER F, TSCHEUSCHLER A, et al. FHY1 mediates nuclear import of the light-activated phytochrome A photo- receptor[J]. PLoS Genet, 2008, 4(8): e1000143. doi: 10.1371/journal. pgen.1000143.
    [30] BU Q Y, CASTILLON A, CHEN F L, et al. Dimerization and blue light regulation of PIF1 interacting bHLH proteins in Arabidopsis[J]. Plant Mol Biol, 2011, 77(4): 501-511. doi: 10.1007/s11103-011-9827-4.
    [31] SHIN J, KIM K, KANG H, et al. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors[J]. Proc Natl Acad Sci USA, 2009, 106(18): 7660-7665. doi: 10.1073/pnas.0812219106.
    [32] LEIVAR P, MONTE E, OKA Y, et al. Multiple phytochrome-inter-acting bHLH transcription factors repress premature seedling photo- morphogenesis in darkness[J]. Curr Biol, 2008, 18(23): 1815-1823. doi: 10.1016/j.cub.2008.10.058.
    [33] CHOI H, JEONG S, KIM D S, et al. The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phyto- chrome B-mediated red light signaling[J]. Physiol Plantarum, 2014, 150(2): 308-320.
    [34] LEIVAR P, MONTE E, AL-SADY B, et al. The Arabidopsis phyto- chrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels[J]. Plant Cell, 2008, 20(2): 337-352. doi: 10.1105/tpc.107.052142.
    [35] KHANNA R, HUQ E, KIKIS E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors[J]. Plant Cell, 2004, 16(11): 3033-3044. doi: 10.1105/tpc.104.025643.
    [36] LEE N, CHOI G. Phytochrome-interacting factor from Arabidopsis to liverwort[J]. Curr Opin Plant Biol, 2017, 35: 54-60. doi: 10.1016/j.pbi.2016.11.004.
    [37] HOECKER U. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling[J]. Curr Opini Plant Biol, 2017, 37: 63-69. doi: 10.1016/j.pbi.2017.03.015.
    [38] LAU O S, DENG X W. The photomorphogenic repressors COP1 and DET1: 20 years later[J]. Trends Plant Sci, 2012, 17: 584-593. doi: 10.1016/j.tplants.2012.05.004.
    [39] SAIJO Y, SULLIVAN J A, WANG H Y, et al. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity[J]. Genes Dev, 2003, 17(21): 2642-2647. doi: 10.1101/gad.1122903.
    [40] SEO H S, YANG J Y, ISHIKAWA M, et al. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1[J]. Nature, 2003, 423(6943): 995-999. doi: 10.1038/nature01696.
    [41] HAN X, HUANG X, DENG X W. The photomorphogenic central repressor COP1: Conservation and functional diversification during evolution[J]. Plant Commun, 2020, 1(3): 100044. doi: 10.1016/j.xplc. 2020.100044.
    [42] XU D Q, JIANG Y, LI J G, et al. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome- mediated degradation[J]. Proc Natl Acad Sci USA, 2016, 113(27): 7655-7660. doi: 10.1073/pnas.1607687113.
    [43] SRIVASTAVA A K, SENAPATI D, SRIVASTAVA A, et al. Short hypocotyl in white light1 interacts with elongated hypocotyl5(HY5) and constitutive photomorphogenic1(COP1) and promotes COP1- mediated degradation of HY5 during Arabidopsis seedling development[J]. Plant Physiol, 2015, 169(4): 2922-2934. doi: 10.1104/pp.15.01184.
    [44] LUO Q, LIAN H L, HE S B, et al. COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis[J]. Plant Cell, 2014, 26(6): 2441-2456. doi: 10.1105/tpc.113.121657.
    [45] GANGAPPA S N, CROCCO C D, JOHANSSON H, et al. The Arabi- dopsis B-BOX protein BBX25 interacts with HY5, negatively regu- lating BBX22 expression to suppress seedling photomorphogenesis[J]. Plant Cell, 2013, 25(4): 1243-1257. doi: 10.1105/tpc.113.109751.
    [46] CHEN D Q, XU G, TANG W J, et al. Antagonistic basic Helix-Loop-Helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5): 1657-1673. doi: 10.1105/tpc.112.104869.
    [47] ANG L H, CHATTOPADHYAY S, WEI N, et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development[J]. Mol Cell, 1998, 1(2): 213-222. doi: 10. 1016/S1097-2765(00)80022-2.
    [48] SAIJO Y, ZHU D M, LI J G, et al. Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling[J]. Mol Cell, 2008, 31(4): 607-613. doi: 10.1016/j.molcel.2008.08.003.
    [49] LI Z L, SHEERIN D J, VON ROEPENACK-LAHAYE E, et al. The phytochrome interacting proteins ERF55 and ERF58 repress light- induced seed germination in Arabidopsis thaliana[J]. Nat Commun, 2022, 13: 1656. doi: 10.1038/s41467-022-29315-3.
    [50] LAPKO V N, JIANG X Y, SMITH D L, et al. Mass spectrometric characterization of oat phytochrome A: Isoforms and posttranslational modifications[J]. Protein Sci, 1999, 8(5): 1032-1044. doi: 10.1110/ps. 8.5.1032.
    [51] KIM J I, SHEN Y, HAN Y J, et al. Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction[J]. Plant Cell, 2004, 16(10): 2629-2640. doi: 10.1105/tpc.104.023879.
    [52] JORDAN E T, MARITA J M, CLOUGH R C, et al. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity[J]. Plant Physiol, 1997, 115(2): 693-704. doi: 10.1104/pp.115.2.693.
    [53] KNEISSL J, SHINOMURA T, FURUYA M, et al. A rice phytochrome A in Arabidopsis: The role of the N-terminus under red and far-red light[J]. Mol Plant, 2008, 1(1): 84-102. doi: 10.1093/mp/ssm010.
    [54] STOCKHAUS J, NAGATANI A, HALFTER U, et al. Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity[J]. Genes Dev, 1992, 6: 2364-2372. doi: 10.1101/gad.6.12a.2364.
    [55] HAN Y J, KIM H S, KIM Y M, et al. Functional characterization of phytochrome autophosphorylation in plant light signaling[J]. Plant Cell Physiol, 2010, 51(4): 596-609. doi: 10.1093/pcp/pcq025.
    [56] HAN Y J, KIM H S, SONG P S, et al. Autophosphorylation desensi- tizes phytochrome signal transduction[J]. Plant Sign Behav, 2010, 5(7): 868-871. doi: 10.4161/psb.5.7.11898.
    [57] RYU J S, KIM J I, KUNKEL T, et al. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer[J]. Cell, 2005, 120(3): 395-406. doi: 10.1016/j.cell.2004.12.019.
    [58] RUBIO V, DENG X W. Phy tunes: Phosphorylation status and phyto- chrome-mediated signaling[J]. Cell, 2005, 120(3): 290-292. doi: 10. 1016/j.cell.2005.01.023.
    [59] SHANKLIN J, JABBEN M, VIERSTRA R D. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation[J]. Proc Natl Acad Sci USA, 1987, 84(2): 359-363. doi: 10.1073/pnas.84.2.359.
    [60] JABBEN M, SHANKLIN J, VIERSTRA R D. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots[J]. Plant Physiol, 1989, 90(2): 380-384. doi: 10.1104/PP. 90.2.380.
    [61] JABBEN M, SHANKLIN J, VIERSTRA R D. Ubiquitin-phytochrome conjugates: Pool dynamics during in vivo phytochrome degradation[J]. J Biol Chem, 1989, 264(9): 4998-5005.
    [62] COHEN P. The origins of protein phosphorylation[J]. Nat Cell Biol, 2002, 4(5): E127-E130. doi: 10.1038/ncb0502-e127.
    [63] KIM D H, KANG J G, YANG S S, et al. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis[J]. Plant Cell, 2002, 14(12): 3043-3056. doi: 10.1105/tpc.005306.
    [64] WANG Y F, HOU Y X, QIU J H, et al. A quantitative acetylomic analysis of early seed development in rice (Oryza sativa L.)[J]. Int J Mol Sci, 2017, 18(7): 1376. doi: 10.3390/ijms18071376.
    [65] LIU X C, CHEN C Y, WANG K C, et al. PHYTOCHROME INTER- ACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings[J]. Plant Cell, 2013, 25(4): 1258-1273. doi: 10. 1105/tpc.113.109710.
    [66] ZHAO L M, PENG T, CHEN C Y, et al. HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomor- phogenesis[J]. Plant Physiol, 2019, 180(3): 1450-1466. doi: 10.1104/pp.19.00055.
    [67] ZHOU Y, KONG D Q, WANG X Y, et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals[J]. Nat Biotechnol, 2022, 40(2): 262-272. doi: 10.1038/s41587-021-01036-w.
    [68] LEGRIS M, KLOSE C, BURGIE E S, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354(6314): 897-900. doi: 10.1126/science.aaf5656.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

邓玲,刘勋成.光敏色素A调控光响应基因表达及其翻译后修饰研究进展[J].热带亚热带植物学报,2024,32(1):143~150

Copy
Share
Article Metrics
  • Abstract:272
  • PDF: 632
  • HTML: 316
  • Cited by: 0
History
  • Received:September 05,2022
  • Online: January 26,2024
  • Published: January 20,2024
Article QR Code