Potential Habitat Selection and Spatial Pattern Prediction of Ottelia cordata
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Ottelia cordata, a wild plant under State second-class protection, likes to be grown in clean water, and is extremely sensitive to environmental changes. It is one of the key indicator species for testing wetland environment and climate change. In China, it is only distributed sporadically in volcanic lava wetland in northern Hainan, the survival condition is not optimistic. The study of potential habitat selection and spatial pattern evolution of O. cordata population will help strengthen the conservation of endangered species and the restoration as well as the management of wetland ecosystem. Based on GIS platform and MaxEnt model, combining with climate, topography and soil factors, the environmental limiting factors of O. cordata population and the evolution pattern of potential suitable habitat in the context of climate change were studied. The results showed that O. cordata population was sensitive to temperature difference and precipitation change. Besides, isothermality, precipitation in the coldest quarter, type of soil and annual precipitation were key environmental factors affecting the distribution of O. cordata population. Under the background of climate change from the middle Holocene to current to 2070s, the area of suitable habitat of O. cordata decreased first and then increased, and the distribution center showed a transfer pattern from southwest to northeast to southwest. Under the future climate scenarios, the highly and moderately suitable habitats were decrease, while the low suitable habitats will increase. The new habitats will appear in the southern region, and the suitable habitats will decrease in the northeast, northwest and southwest. Therefore, the potential habitat selection and spatial distribution characteristics of O. cordata population were discussed from the perspective of climate environment, which could provide reference and theoretical basis for endangered species conservation, wetland management and biodiversity maintenance.

    Reference
    [1] YANG X B, LI D H, CHEN Y K, et al. The Colored Illustrated Flora of Hainan Province, Vol. 1-14[M]. Beijing: Science Press, 2015.[杨小波, 李东海, 陈玉凯, 等. 海南植物图志, 第1~14卷[M]. 北京: 科学出版社, 2015.]
    [2] ZHAO Z C, SUN X Z, WANG H Q. A study on the ecology of the fresh water Hydrocharidaceae in south China[J]. Acta Ecol Sin, 1984, 4(4): 354-363.[赵佐成, 孙祥钟, 王徽勤. 华南地区淡水水鳖科植物的生态特征和群落学观察[J]. 生态学报, 1984, 4(4): 354-363.]
    [3] SHEN Y C, LEI J R, SONG X Q, et al. Annual population dynamics and their influencing factors for an endangered submerged macrophyte (Ottelia cordata)[J]. Front Ecol Evol, 2021, 9: 688304. doi: 10.3389/FEVO.2021.688304.
    [4] JIAN Y X, YANG G M, PENG Y H, et al. Studies on daryotypes of Ottelia alismoides (L.) Pers. and Ottelia cordata (Wall.) Dandy[J]. J Hunan Coll Trad Chin Med, 1996, 16(1): 56-58.[简永兴, 杨广民, 彭映辉, 等. 水白菜与水菜花的核型分析[J]. 湖南中医学院学报, 1996, 16(1): 56-58.]
    [5] ZHANG Q F, SHEN Z X, LI F Y, et al. Complete chloroplast genome sequence of an endangered Ottelia cordata and its phylogenetic analysis[J]. Mitochondrial DNA B Resour, 2020, 5(3): 2209-2210. doi: 10.1080/23802359.2020.1768921.
    [6] WANG H X, GUO J L, LI Z M, et al. Characterization of the complete chloroplast genome of an endangered aquatic macrophyte, Ottelia cordata (Hydrocharitaceae)[J]. Mitochondrial DNA B Resour, 2019, 4(1): 1839-1840. doi: 10.1080/23802359.2019.1612719.
    [7] WANG S N, LI P P, LIAO Z Y, et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot, 2022, 196: 104818. doi: 10.1016/j.envexpbot.2022.104818.
    [8] HUANG W M, HAN S J, XING Z F, et al. Responses of leaf anatomy and CO2 concentrating mechanisms of the aquatic plant Ottelia cordata to variable CO2[J]. Front Plant Sci, 2020, 11: 1261. doi: 10.3389/fpls. 2020.01261.
    [9] FARASHI A, KABOLI M, KARAMI M. Predicting range expansion of invasive raccoons in northern Iran using ENFA model at two different scales[J]. Ecol Inform, 2013, 15: 96-102. doi: 10.1016/j.ecoinf.2013. 01.001.
    [10] KONG W Y, LI X H, ZOU H F. Optimizing MaxEnt model in the prediction of species distribution[J]. Chin J Appl Ecol, 2019, 30(6): 2116-2128.[孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 2019, 30(6): 2116-2128. doi: 10.13287/j.1001-9332.201906.029.]
    [11] LIN H, WANG Y S. Analysis and research on water quality of Meishe River national wetland park in Haikou[J]. Trop For, 2020, 48(4): 42-46.[林华, 王耀山. 海口美舍河国家湿地公园水质分析研究[J]. 热带林业, 2020, 48(4): 42-46. doi: 10.3969/j.issn.1672-0938.2020.04.009.]
    [12] YANG X B, WU Q S, LI Y L, et al. Characteristic of tropical forest composition in north of Hainan Island[J]. Sci Sil Sin, 2005, 41(3): 19-24.[杨小波, 吴庆书, 李跃烈, 等. 海南北部地区热带雨林的组成特征[J]. 林业科学, 2005, 41(3): 19-24. doi: 10.3321/j.issn:1001-7488.2005.03.004.]
    [13] WANG X. Study on interconnected river network system and hydrodynamic water environment in Haikou City[D]. Guangzhou: South China University of Technology, 2018.[王欣. 海口市河湖水系连通与水动力水环境研究[D]. 广州: 华南理工大学, 2018.]
    [14] SHEN Y C, LU G, LIU S B, et al. Characteristics of plant distribution in volcanic lava wetlands in Yangshan, Haikou[J]. Wetland Sci, 2019, 17(5): 493-503.[申益春, 卢刚, 刘寿柏, 等. 海口羊山火山熔岩湿地中的植物分布特征[J]. 湿地科学, 2019, 17(5): 493-503. doi: 10. 13248/j.cnki.wetlandsci.2019.05.001.]
    [15] YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51: 83-87. doi: 10.1016/j.ecoleng.2012.12.004.
    [16] ZHANG H, ZHAO H X, XU C G. The potential geographical distribution of Alsophila spinulosain under climate change in China[J]. Chin J Ecol, 2021, 40(4): 968-979.[张华, 赵浩翔, 徐存刚. 气候变化背景下孑遗植物桫椤在中国的潜在地理分布[J]. 生态学杂志, 2021, 40(4): 968-979. doi: 10.13292/j.1000-4890.202104.022.]
    [17] ZHANG H, ZHAO H X, WANG H. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on Maxent model[J]. Acta Ecol Sin, 2020, 40(18): 6552-6563.[张华, 赵浩翔, 王浩. 基于Maxent模型的未来气候变化情景下胡杨在中国的潜在地理分布[J]. 生态学报, 2020, 40(18): 6552-6563. doi: 10.5846/stxb201906111232.]
    [18] ARAÚJO M B, GUISAN A. Five (or so) challenges for species distribution modelling[J]. J Biogeogr, 2006, 33(10): 1677-1688. doi: 10.1111/j.1365-2699.2006.01584.x.
    [19] PEARSON R G, RAXWORTHY C J, NAKAMURA M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar[J]. J Biogeogr, 2007, 34(1): 102-117. doi: 10.1111/j.1365-2699.2006.01594.x.
    [20] NING Y, LEI J R, SONG X Q, et al. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant[J]. Chin J Plant Ecol, 2018, 42(9): 946-954.[宁瑶, 雷金睿, 宋希强, 等. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟[J]. 植物生态学报, 2018, 42(9): 946-954. doi: 10.17521/cjpe.2018.0066.]
    [21] SEMENIUK C A, SEMENIUK V. The response of basin wetlands to clim5.032.]nges: A review of case studies from the Swan Coastal Plain, south-western Australia[J]. Hydrobiologia, 2013, 708(1): 45-67. doi: 10.1007/s10750-012-1161-6.
    [22] BARROS D F, ALBERNAZ A L M. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon[J]. Braz J Biol, 2014, 74(4): 810-820. doi: 10.1590/1519-6984.04013.
    [23] ZHANG M, LIN H, LONG X R, et al. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000—2019 time-series Landsat data[J]. Sci Total Environ, 2021, 780: 146615. doi: 10.1016/j.scitotenv.2021.146615.
    [24] YU C L, WANG Z C, LIU D, et al. Evolution process and driving force analysis of natural wetlands in Xiliao River Basin based on SWAT model[J]. Trans Chin Soc Agric Eng, 2020, 36(22): 286-297.[于成龙, 王志春, 刘丹, 等. 基于SWAT模型的西辽河流域自然湿地演变过程及驱动力分析[J]. 农业工程学报, 2020, 36(22): 286-297. doi: 10.11975/j.issn.1002-6819.2020.22.032.]
    [25] YANG D, WANG W J, WU X Q, et al. Regime shifts of Anguli wetland and its response to climate change from 1985 to 2016[J]. Res Environ Sci, 2021, 34(12): 2954-2961.[杨丹, 王文杰, 吴秀芹, 等. 1985—2016年安固里淖湖泊湿地生态系统稳态转变及对气候变化的响应[J]. 环境科学研究, 2021, 34(12): 2954-2961. doi: 10.13198/j.issn.1001-6929.2021.09.17.]
    [26] LIU Z W, LI S N, WEI W, et al. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades[J]. Chin J Ecol, 2019, 38(3): 856-862.[刘志伟, 李胜男, 韦玮, 等. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38(3): 856-862. doi: 10.13292/j.1000-4890.201903.002.]
    [27] SCHEFFER M, SZABÓ S, GRAGNANI A, et al. Floating plant dominance as a stable state[J]. Proc Natl Acad Sci USA, 2003, 100(7): 4040-4045. doi: 10.1073/pnas.0737918100.
    [28] FAN Z H, HUANG Z, ZHOU X H. Optimizing and improving strategy for Haikou wetland ecological system[J]. CS For Invent Plann, 2019, 38(2): 68-72.[范志浩, 黄铮, 周湘红. 海口湿地生态系统优化提升策略[J]. 中南林业调查规划, 2019, 38(2): 68-72. doi: 10.16166/j.cnki.cn43-1095.2019.02.016.]
    [29] SHEN Y C, REN M X, LI W, et al. Landscape plant community and its application model in Yangshan Wetland[J]. Jiangsu Agric Sci, 2021, 49(11): 92-97.[申益春, 任明迅, 黎伟, 等. 羊山湿地景观植物群落与景观应用模式[J]. 江苏农业科学, 2021, 49(11): 92-97. doi: 10. 15889/j.issn.1002-1302.2021.11.016.]
    [30] THOMAS C D, CAMERON A, GREEN R E, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970): 145-148. doi: 10. 1038/nature02121.
    [31] ZHONG Z Q, QIU P H, YANG X. Analysis of wetland changes and driving forces in Haikou in the last 30 years[J]. J Hainan Norm Univ (Nat Sci), 2021, 34(2): 215-226.[钟尊倩, 邱彭华, 杨星. 海口市近30年来湿地变化及其驱动力分析[J]. 海南师范大学学报(自然科学版), 2021, 34(2): 215-226. doi: 10.12051/j.issn.1674-4942.2021.02.014.]
    [32] NGAREGA B K, NZEI J M, SAINA J K, et al. Mapping the habitat suitability of Ottelia species in Africa[J]. Plant Divers, 2022, 44(5): 468-480. doi: 10.1016/j.pld.2021.12.006.
    [33] QIN Y Y, LU K, DU Z Y, et al. Potential changes in the geographical distribution of the relict plant Potaninia mongolica Maxim. in China under climate change scenarios[J]. Acta Ecol Sin, 2022, 42(11): 4473-4484.[秦媛媛, 鲁客, 杜忠毓, 等. 气候变化情景下孑遗植物绵刺在中国的潜在地理分布[J]. 生态学报, 2022, 42(11): 4473-4484. doi: 10.5846/stxb202106111553.]
    [34] ZHANG L J, LI Y H, REN H, et al. Prediction of the suitable distribution of Cyclobalanopsis glauca and its implications for the northern boundary of subtropical zone of China[J]. Geogr Res, 2020, 39(4): 990-1001.[张立娟, 李艳红, 任涵, 等. 气候变化背景下青冈分布变化及其对中国亚热带北界的指示意义[J]. 地理研究, 2020, 39(4): 990-1001. doi: 10.11821/dlyj020190306.]
    [35] YANG T, WANG S T, WEI X Z, et al. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Sci J, 2020, 38(5): 627-635.[杨腾, 王世彤, 魏新增, 等. 中国特有属秤锤树属植物的潜在分布区预测[J]. 植物科学学报, 2020, 38(5): 627-635. doi: 10.11913/PSJ.2095-0837.2020.50627.]
    [36] MA S M, WEI B, LI X C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chin J Ecol, 2017, 36(5): 1243-1250.[马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 36(5): 1243-1250. doi: 10.13292/j.1000-4890.20170
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

吴庭天,雷金睿,陈宗铸,陈小花,李苑菱.水菜花种群潜在生境选择与空间格局预测[J].热带亚热带植物学报,2024,32(1):55~65

Copy
Share
Article Metrics
  • Abstract:149
  • PDF: 467
  • HTML: 272
  • Cited by: 0
History
  • Received:August 25,2022
  • Online: January 26,2024
  • Published: January 20,2024
Article QR Code