Studies on Biomass Allocation of a Common Mistletoe Species, Taxillus nigrans, in Southwest China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [47]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To further understand the growth development characteristics and survival strategies of semi-parasitic plants, the biomass allocation pattern and allometric growth characteristics of Taxillus nigrans, a typical southwestern semi-parasitic plant, were studied, and regression models of individual biomass (TB) with length (L) or base diameter (BD) as independent variables were established: TB=0.0027L2.3077, TB=134.99BD3.334, and TB= 4.35L+8.34BD–183.85. The results showed that the biomass allocation ratio of T. nigrans at juvenile stage and the nonjuvenile stage was leaf > stem > haumator and stem > leaf > haumator, respectively. At juvenile stage, there was an isometric relationship between haustoria and shoots (leaf, stem, and fruit). At nonjuvenile stage, the allometric growth relationships among the organs of T. nigrans were not consistent with the allometric biomass partitioning theory (APT), the allometric exponent (1.01) between leaves and haustoria was significantly higher than the predicted value from APT (0.75) (P<0.001), and there was a significant allometric relationship between stems and haustoria (P=0.001). The unique biomass allocation patterns and allometric growth characteristics of T. nigrans were beneficial to its adaptation to parasitic life.

    Reference
    [1] LI L, LI Y B, MA Q H, et al. Aboveground biomass modeling and allometric growth characteristics of Artemisia capillaris Thunb. under different water availabilities[J]. Chin J Ecol, 2020, 39(1): 337-348.[李浪, 李义博, 马全会, 等. 水分驱动下茵陈蒿(Artemisia capillaris Thunb.)地上生物量模型与异速生长特征[J]. 生态学杂志, 2020, 39(1): 337-348. doi: 10.13292/j.1000-4890.202001.001.]
    [2] HOVENDEN M J, NEWTON P C, WILLS K E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide[J]. Nature, 2014, 511(7511): 583-586. doi: 10.1038/nature13281.
    [3] MÜLLER I, SCHMID B, WEINER J. The effect of nutrient availa- bility on biomass allocation patterns in 27 species of herbaceous plants[J]. Persp Plant Ecol Evol Syst, 2000, 3(2): 115-127. doi: 10.1078/1433-8319-00007.
    [4] MCCARTHY M C, ENQUIST B J, KERKHOFF A J. Organ partitioning and distribution across the seed plants: Assessing the relative importance of phylogeny and function[J]. Int J Plant Sci, 2007, 168(5): 751-761. doi: 10.1086/513491.
    [5] ROA-FUENTES L L, CAMPO J, PARRA-TABLA V. Plant biomass allocation across a precipitation gradient: An approach to seasonally dry tropical forest at Yucatan, Mexico[J]. Ecosystems, 2012, 15(8): 1234-1244. doi: 10.1007/s10021-012-9578-3.
    [6] WANG X M, YAN B G, SHI L T, et al. Different responses of biomass allocation and leaf traits of Dodonaea viscosa to concentrations of nitrogen and phosphorus[J]. Chin J Plant Ecol, 2020, 44(12): 1247-1261.[王雪梅, 闫帮国, 史亮涛, 等. 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异[J]. 植物生态学报, 2020, 44(12): 1247-1261. doi: 10.17521/cjpe.2020.0199.]
    [7] XUE Q, CHEN B, YANG X M, et al. Biomass allocation, water use characteristics, and photosynthetic light response of four Commelinaceae plants under different light intensities[J]. Acta Pratacul Sin, 2022, 31(1): 69-80.[薛晴, 陈斌, 杨小梅, 等. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征[J]. 草业学报, 2022, 31(1): 69-80. doi: 10.11686/cyxb2021250.]
    [8] LI Y Q, SUN J W, LI J F, et al. Biomass allocation and its allometric growth of Pinus yunnanensis seedlings of different families[J]. J Beijing For Univ, 2021, 43(8): 18-28.[李亚麒, 孙继伟, 李江飞, 等. 云南松不同家系苗木生物量分配及其异速生长[J]. 北京林业大学学报, 2021, 43(8): 18-28. doi: 10.12171/j.1000−1522.20200142.]
    [9] THORNLEY J H. Balanced quantitative model for root-shoot ratios in vegetative plants[J]. Ann Bot, 1972, 36(145): 431-441. doi: 10.1093/oxfordjournals.aob.a084602.
    [10] BLOOM A J, CHAPIN F S, MOONEY H A. Resource limitation in plants: An economic analogy[J]. Ann Rev Ecol System, 1985, 16(1): 363-392. doi: 10.1146/annurev.es.16.110185.002051.
    [11] MCCARTHY M C, ENQUIST B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Funct Ecol, 2007, 21(4): 713-720. doi: 10. 1111/j.1365-2435.2007.01276.x.
    [12] ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295(5559): 1517-1520. doi: 10.1126/science.1066360.
    [13] CHENG D L, NIKLAS K J. Above- and below-ground biomass relationships across 1534 forested communities[J]. Ann Bot, 2007, 99(1): 95-102. doi: 10.1093/aob/mcl206.
    [14] LIU R, YANG X J, GAO R R, et al. Allometry rather than abiotic drivers explains biomass allocation among leaves, stems and roots of Artemisia across a large environmental gradient in China[J]. J Ecol, 2021, 109(2): 1026-1040. doi: 10.1111/1365-2745.13532.
    [15] SMITH-MARTIN C M, XU X T, MEDVIGY D, et al. Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees[J]. New Phytol, 2020, 226(3): 714-726. doi: 10.1111/nph.16275.
    [16] NIKLAS K J, ENQUIST B J. Canonical rules for plant organ biomass partitioning and annual allocation[J]. Am J Bot, 2002, 89(5): 812-819. doi: 10.3732/ajb.89.5.812.
    [17] GEDROC J J, MCCONNAUGHAY K D M, COLEMAN J S. Plasticity in root shoot partitioning: Optimal, ontogenetic, or both?[J]. Funct Ecol, 1996, 10(1): 44-50. doi: 10.2307/2390260.
    [18] SKARPAAS O, MEINERI E, BARGMANN T, et al. Biomass partitioning in grassland plants along independent gradients in temperature and precipitation[J]. Persp Plant Ecol Evol Syst, 2016, 19(19): 1-11. doi: 10.1016/j.ppees.2016.01.006.
    [19] MATTHIES D. Parasitic and competitive interactions between the hemiparasites Rhinanthus serotinus and Odontites rubra and their host Medicago sativa[J]. J Ecol, 1995, 83(2): 245-251. doi: 10.2307/2261563.
    [20] MATTHIES D. Influence of the host on growth and biomass allocation in the two facultative root hemiparasites Odontites vulgaris and Euphrasia minima[J]. Flora, 1998, 193(2): 187-193. doi: 10.1016/s0367-2530(17)30838-1.
    [21] NDAGURWA H G T, MUTIRWARA W, NCUBE S F, et al. Estimating mistletoe biomass in a semi-arid savanna woodland, southwest Zimba- bwe[J]. Acta Oecol, 2022, 117: 103849. doi: 10.1016/j.actao.2022. 103849.
    [22] TĚŠITEL J, PLAVCOVA L, CAMERON D D. Interactions between hemiparasitic plants and their hosts: The importance of organic carbon transfer[J]. Plant Signal Behav, 2010, 5(9): 1072-1076. doi: 10.4161/psb.5.9.12563.
    [23] PRESS M C, PHOENIX G K. Impacts of parasitic plants on natural communities[J]. New Phytol, 2005, 166(3): 737-751. doi: 10.1111/j.1469-8137.2005.01358.x.
    [24] TĚŠITEL J. Functional biology of parasitic plants: A review[J]. Plant Ecol Evol, 2016, 149(1): 5-20. doi: 10.5091/plecevo.2016.1097.
    [25] MATTHIES D. Interactions between a root hemiparasite and 27 different hosts: Growth, biomass allocation and plant architecture[J]. Perspect Plant Ecol Evol Syst, 2017, 24: 118-137. doi: 10.1016/j.pp ees.2016.12.006.
    [26] GODFREE R C, TINNIN R O, FORBES R B. Relationships between Arceuthobium americanum and the structure of Pinus contorta var. murrayana stands in central Oregon[J]. Plant Ecol, 2003, 165(1): 69-84. doi: 10.1023/a:1021598712920.
    [27] GIBSON C C, WATKINSON A R. Host selectivity and the mediation of competition by the root hemiparasite Rhinanthus minor[J]. Oecologia, 1991, 86(1): 81-87. doi: 10.1007/bf00317393.
    [28] CALLAWAY R M, PENNINGS S C. Impact of a parasitic plant on the zonation of two salt marsh perennials[J]. Oecologia, 1998, 114(1): 100-105. doi: 10.1007/s004420050425.
    [29] NDAGURWA H G T, NDAREVANI P, MUVENGWI J, et al. Mistletoes via input of nutrient-rich litter increases nutrient supply and enhance plant species composition and growth in a semi-arid savanna, southwest Zimbabwe[J]. Plant Ecol, 2016, 217(9): 1095-1104. doi: 10. 1007/s11258-016-0635-4.
    [30] WU Y, ZHEN L, CUI X S, et al. Influence on biomass and carbohydrate in Nitraria tangutorum Bobr. when it parasitized by Cynomorium songaricum[J]. J China Agric Univ, 2012, 17(4): 53-57.[吴艳, 郑雷, 崔旭盛, 等. 锁阳寄生对白刺生物量及碳水化合物影响研究[J]. 中国农业大学学报, 2012, 17(4): 53-57. doi: 10.11841/j.issn. 1007-4333.2012.04.009.]
    [31] FERNANDEZ-APARICIO M, FLORES F, RUBIALES D. The Effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity[J]. Front Plant Sci, 2016, 7: 1409. doi: 10.3389/fpls.2016.01409.
    [32] MARVIER M A. Parasite impacts on host communities: Plant parasitism in a California coastal prairie[J]. Ecology, 1998, 79(8): 2616-2623. doi: 10.2307/176505.
    [33] AMELOOT E, VERHEYEN K, HERMY M. Meta-analysis of standing crop reduction by Rhinanthus spp. and its effect on vegetation structure[J]. Folia Geobot, 2005, 40(2): 289-310. doi: 10.1007/bf02803241.
    [34] MA R, MIAO N, ZHANG H X, et al. Generalist mistletoes and their hosts and potential hosts in an urban area in southwest China[J]. Urban For Urban Gree, 2020, 53: 126717. doi: 10.1016/j.ufug.2020.126717.
    [35] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1): 30-50. doi: 10. 1111/j.1469-8137.2011.03952.x.
    [36] ROBAKOWSKI P, BIELINIS E, SENDALL K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy[J]. J Plant Res, 2018, 131(3): 505-523. doi: 10.1007/s10265-018-1009-x.
    [37] SONG S S, LENG H B, FENG S C, et al. Biomass allocation pattern of urban shrubs in the Yangtze River Delta region, China: A field observation of 13 shrub species[J]. Urban For Urban Gree, 2021, 63: 127228. doi: 10.1016/j.ufug.2021.127228.
    [38] GUO S, ZHAO H B, ZHOU G Y, et al. Biomass and its distribution pattern of four tree species plantation in south subtropical China[J]. For Res, 2022, 35(1): 182-189.[郭耆, 赵厚本, 周光益, 等. 南亚热带4个树种人工林生物量及其分配格局[J]. 林业科学研究, 2022, 35(1): 182-189. doi: 10.13275/j.cnki.lykxyj.2022.01.021.]
    [39] YAN B G, FAN B, HE G X, et al. Biomass allocations and their response to environmental factors for grass species in an aridhot valley[J]. Chin J Appl Ecol, 2016, 27(10): 3173-3181.[闫帮国, 樊博, 何光熊, 等. 干热河谷草本植物生物量分配及其对环境因子的响应[J]. 应用生态学报, 2016, 27(10): 3173-3181. doi: 10.13287/j.1001-9332. 201610.005.]
    [40] REICH P B, LUO Y, BRADFORD J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Natl Acad Sci USA, 2014, 111(38): 13721-13726. doi: 10.1073/pnas.1216053111.
    [41] NIKLAS K J, ENQUIST B J. On the vegetative biomass partitioning of seed plant leaves, stems, and roots[J]. Am Nat, 2002, 159(5): 482-497. doi: 10.1086/339459.
    [42] LIE G W, XUE L. Biomass allocation patterns in forests growing different climatic zones of China[J]. Trees, 2016, 30(3): 639-646. doi: 10.1007/s00468-015-1306-0.
    [43] POORTER H, JAGODZINSKI A M, RUIZ-PEINADO R, et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents[J]. New Phytol, 2015, 208(3): 736-749. doi: 10.1111/nph.13571.
    [44] CHEN G P, YANG K T, WANG L, et al. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu[J]. Chin J Plant Ecol, 2020, 44(10): 1040-1049.[陈国鹏, 杨克彤, 王立, 等. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. doi: 10.17521/cjpe.2020. 0119.]
    [45] PRESS M C, GRAVES J D, STEWART G R. Transpiration and carbon acquisition in root hemiparasitic angiosperms[J]. J Exp Bot, 1988, 39(8): 1009-1014. doi: 10.1093/jxb/39.8.1009.
    [46] SAUCET S B, SHIRASU K. Molecular parasitic plant-host interactions[J]. Plos Pathog, 2016, 12(12): e1005978. doi: 10.1371/journal. ppat.1005978.
    [47] JHU M Y, SINHA N R. Parasitic plants: An overview of mechanisms by which plants perceive and respond to parasites[J]. Ann Rev Plant Biol, 2022, 73: 433-455. doi: 10.1146/annurev-arplant-102820-100635.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

岳喜明,缪宁,马瑞,李桾溢,陶琼,薛盼盼.西南典型半寄生植物毛叶钝果寄生的生物量分配研究[J].热带亚热带植物学报,2024,32(1):66~74

Copy
Share
Article Metrics
  • Abstract:178
  • PDF: 515
  • HTML: 291
  • Cited by: 0
History
  • Received:July 18,2022
  • Online: January 26,2024
  • Published: January 20,2024
Article QR Code