Screening and Evaluation of Superior Germplasm Based on Yield and Quality Characteristics of Hemerocallis citrina
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The aim was to screen the superior germplasm resources of Hemerocallis citrina. The yield formation and quality of 20 H. citrina germplasms were evaluated by using correlation analysis, stepwise regression, path analysis and TOPSIS analysis. The results showed that variations in agronomic, yield and quality traits among different H. citrina germplasms were rich with coefficient of variation (CV) from 1.9% to 75.6%. The CV of bud chroma a* (redness) was the highest (75.6%), followed by total flavone content (67.9%) and bud weight (41.0%), and water content of bud was the lowest (1.9%). Bud weight, bud diameter and flower moss number were significantly correlated with yield with CV of 0.737, 0.583 and 0.517, respectively. The correlation among nutrient quality traits was weak, while the correlation between appearance color index and some nutritional quality was extremely significant. The results of stepwise regression and path analysis suggested that floral bud weight and scape number were the main determinant of yield formation across all investigated germplasms, with decision coefficients of 0.534 and 0.239, respectively. The combination weights of nutritional quality and color parameters, calculated by using the method of coefficient of variation-entropy weight, were 0.523 and 0.477, respectively, and the results could effectively distinguish the best quality rank of different germplasm resources with application of combined the TOPSIS analysis method. Two-dimensional scatter distribution diagrams, a visualized overall assessment result simultaneously considering yield and quality, could be derived for use in the high yield and bud quality quickly screening of H. citrina.

    Reference
    [1] RODRIGUEZ-ENRIQUEZ M J, GRANT-DOWNTON R T. A new day dawning: Hemerocallis (daylily) as a future model organism[J]. AoB Plants, 2013, 5: pls055. doi: 10.1093/aobpla/pls055.
    [2] HOU F F, LI S, WANG J Y, et al. Identification and validation of reference genes for quantitative real-time PCR studies in long yellow daylily, Hemerocallis citrina Borani[J]. PLoS One, 2017, 12(3): e0174933. doi: 10.1371/journal.pone.0174933.
    [3] LI S, JI F F, HOU F F, et al. Morphological, palynological and molecular assessment of Hemerocallis core collection[J]. Sci Hort, 2021, 285: 110181. doi: 10.1016/j.scienta.2021.110181.
    [4] CAI J Q, TU X N, YIN L Q. Countermeasures and suggestions for high-quality development of day lily industry in the Yellow River Basin[J]. Soil Water Cons China, 2022(1): 5-7.[蔡建勤, 土小宁, 殷丽强. 黄河流域黄花菜产业高质量发展的对策及建议[J]. 中国水土保持, 2022(1): 5-7. doi: 10.3969/j.issn.1000-0941.2022.01.004.]
    [5] XIAO N, PAN C H, LI Y H, et al. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice[J]. Genome Biol, 2021, 22(1): 283. doi: 10.1186/s13059-021-02488-8.
    [6] WANG X K, GUO T, WANG Y, et al. Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of northwest China based on PCA[J]. Agric Water Manage, 2020, 237: 106180. doi: 10.1016/j.agwat.2020.106180.
    [7] XU Z J, QI Y J, XING X H, et al. Analysis and evaluation of agronomic and quality traits in soybean germplasms from Huang-Huai-Hai Region[J]. J Plant Gene Resour, 2022, 23(2): 468-479.[徐泽俊, 齐玉军, 邢兴华, 等. 黄淮海大豆种质农艺与品质性状分析及综合评价[J]. 植物遗传资源学报, 2022, 23(2): 468-479. doi: 10.13430/j.cnki. jpgr.20210915001.]
    [8] DU Q J, LI J M, PAN T H, et al. The compound effects of water and fertilizer on yield and quality of tomato under drip irrigation[J]. Agric Res Arid Areas, 2015, 33(3): 10-17.[杜清洁, 李建明, 潘铜华, 等. 滴灌条件下水肥耦合对番茄产量及综合品质的影响[J]. 干旱地区农业研究, 2015, 33(3): 10-17. doi: 10.7606/j.issn.1000-7601.2015.03. 02.]
    [9] HE Z H, LI M N, CAI Z L, et al. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato[J]. Agric Water Manage, 2021, 243: 106360. doi: 10.1016/j.agwat.2020.106360.
    [10] LI H Z, CAO H X, GUO L J, et al. Effect of furrow irrigation pattern and irrigation amount on comprehensive quality and yield of greenhouse tomato[J]. Sci Agric Sin, 2016, 49(21): 4179-4191.[李红峥, 曹红霞, 郭莉杰, 等. 沟灌方式和灌水量对温室番茄综合品质与产量的影响[J]. 中国农业科学, 2016, 49(21): 4179-4191. doi: 10. 3864/j.issn.0578-1752.2016.21.012.]
    [11] HAO K, FEI L J, LIU L H, et al. Comprehensive evaluation on the yield, quality, and water-nitrogen use efficiency of mountain apple under surge-root irrigation in the Loess Plateau based on the improved TOPSIS method[J]. Front Plant Sci, 2022, 13: 853546. doi: 10.3389/fpls.2022.853546.
    [12] HU X H, GAO Z X, MA Y B, et al. Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing[J]. Trans CSAE, 2020, 36(17): 81-89.[胡晓辉, 高子星, 马永博, 等. 基于产量品质及水肥利用率的袋培辣椒水肥耦合方案[J]. 农业工程学报, 2020, 36(17): 81-89. doi: 10.11975/j.issn.1002-6819.2020.17.010.]
    [13] WU Z N, LÜ H, MENG Y, et al. The determination of flood damage curve in areas lacking disaster data based on the optimization principle of variation coefficient and beta distribution[J]. Sci Total Environ, 2021, 750: 142277. doi: 10.1016/j.scitotenv.2020.142277.
    [14] LU X Y, HU H X, YUAN G, et al. Application of TOPSIS method based on coefficient of entropy to evaluation of sprouts[J]. Chin Cucurbits Veg, 2022, 35(4): 87-91.[陆晓燕, 胡汉锡, 袁庚, 等. 基于熵权的TOPSIS法在芽苗菜品质综合评价中的应用[J]. 中国瓜菜, 2022, 35(4): 87-91. doi: 10.16861/j.cnki.zggc.2022.0095.]
    [15] XIANG C P, LI X X. Descriptors and Data Standard for Daylily (Hemerocallis citrina Baroni)[M]. Beijing: China Agricultural Science and Technology Press, 2014: 9-13.[向长萍, 李锡香. 黄花菜种质资源描述规范和数据标准[M]. 北京: 中国农业科学技术出版社, 2014: 9-13.]
    [16] LI H S. Principle and Technology of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000.[李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.]
    [17] WANG M L, LÜ J G, ZHOU Z C. Determination vitamma C in fruits and vegetables by spectrophometric of phosphomolybdic heterpolyacids[J]. Food Sci, 2003, 24(8): 129-131.[王美兰, 吕建刚, 周志才. 磷钼杂多酸光度法测定水果、蔬菜VC[J]. 食品科学, 2003, 24(8): 129-131.]
    [18] Shenzhen Municipal Commission of Market and Quality Supervision and Administration. SZDB/Z 349—2019 Determination of total flavonoids in foods spectrophotometry[S]. Shenzhen: Shenzhen Municipal Commission of Market and Quality Supervision and Administration, 2019.[深圳市市场和质量监督管理委员会. SZDB/Z 349—2019食品中总黄酮的测定分光光度法[S]. 深圳: 深圳市市场和质量监督管理委员会, 2019.]
    [19] National Health Commission, State Administration for Market Regulation. GB/T 12456—2021 National Standard for Food Safety: Determination of Total Acids in Foods[S]. Beijing: Standards Press of China, 2021.[国家卫生健康委员会, 国家市场监督管理总局. GB/T 12456—2021食品安全国家标准食品中总酸的测定[S]. 北京: 中国标准出版社, 2021.]
    [20] JI H, WANG L, JIA L H, et al. Effects of different treatment methods on the edible quality of Hemerocallis fulva buds[J]. J Food Saf Qual, 2020, 11(18): 6557-6561.[及华, 王琳, 贾立海, 等. 不同处理方法对萱草花蕾食用品质的影响[J]. 食品安全质量检测学报, 2020, 11(18): 6557-6561. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.18.054.]
    [21] CHEN H G, LI X N, LI C Y. Resilience evaluation of water resource system based on coefficient of variation-entropy weight method: A case study of water resources in Heilongjiang Province from 2007 to 2016[J]. Ecol Econ, 2021, 37(1): 179-184.[陈红光, 李晓宁, 李晨洋. 基于变异系数熵权法的水资源系统恢复力评价——以黑龙江省2007—2016年水资源情况为例[J]. 生态经济, 2021, 37(1): 179-184.]
    [22] YUAN Z F, ZHOU J Y, GUO M C, et al. Decision coefficient: The decision index of path analysis[J]. J NW Agric For Univ (Nat Sci), 2001, 29(5): 131-133.[袁志发, 周静芋, 郭满才, 等. 决策系数——通径分析中的决策指标[J]. 西北农林科技大学学报(自然科学版), 2001, 29(5): 131-133. doi: 10.13207/j.cnki.jnwafu.2001.05.035.]
    [23] ZHAO M, ZHOU B Y, MA W, et al. Theoretical and technical models of quantitative regulation in food crop production system[J]. Acta Agron Sin, 2019, 45(4): 485-498.[赵明, 周宝元, 马玮, 等. 粮食作物生产系统定量调控理论与技术模式[J]. 作物学报, 2019, 45(4): 485-498. doi: 10.3724/SP.J.1006.2019.83051.]
    [24] YE Y L, WANG G L, HUANG Y F, et al. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties[J]. Field Crop Res, 2011, 124(3): 316-322. doi: 10.1016/j.fcr. 2011.06.023.
    [25] PIAO L, QI H, LI C F, et al. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize[J]. Field Crop Res, 2016, 198: 258-268. doi: 10.1016/j.fcr.2016.08.012.
    [26] GAO F, LIU Z X, ZHAO J H, et al. Source-sink characteristics and classification of peanut major cultivars in North China[J]. Acta Agron Sin, 2021, 47(9): 1712-1723.[高芳, 刘兆新, 赵继浩, 等. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. doi: 10.3724/SP.J.1006.2021.04164.]
    [27] XU L N, TAO H B, HUANG S B, et al. Analysis on the limiting factors to further improve yield of summer maize in Heilonggang River Valley[J]. Acta Ecol Sin, 2013, 33(1): 222-228.[徐丽娜, 陶洪斌, 黄收兵, 等. 黑龙港流域夏玉米产量提升限制因素[J]. 生态学报, 2013, 33(1): 222-228. doi: 10.5846/stxb201111051676.]
    [28] KONG S P, SUN J Q, WU X, et al. Analysis of relationship between variations of main agronomic traits and yield in garlic[J]. Sci Agric Sin, 2015, 48(6): 1240-1248.[孔素萍, 孙敬强, 吴雄, 等. 大蒜主要农艺性状变异特征及其与产量相关构成分析[J]. 中国农业科学, 2015, 48(6): 1240-1248. doi: 10.3864/j.issn.0578-1752.2015.06.19.]
    [29] ZHOU L L, ZHANG L J, YU X, et al. Comparison of ecological adaptability and nutritional quality of daylily in northern Jiangsu Province[J]. J N Agric, 2020, 48(5): 109-114.[周玲玲, 张黎杰, 余翔, 等. 苏北地区黄花菜生态适应性及营养品质比较[J]. 北方农业学报, 2020, 48(5): 109-114. doi: 10.12190/j.issn.2096-1197.2020. 05.19.]
    [30] SONG X M, WANG J F, LIU J, et al. Study on artificial cultivation and high yield techniques of Hemerocallis spp.[J]. S Chin Agric, 2018, 12(3): 24-26.[宋希明, 王嘉夫, 刘君, 等. 黄花菜人工栽培及丰产技术探究[J]. 南方农业, 2018, 12(3): 24-26. doi: 10.19415/j.cnki. 1673-890x.2018.03.012.]
    [31] LIU Z M, SHEN M J. Studies on product characters of seven day lily varieties[J]. J Hunan Agric Coll, 1990(2): 181-185.[刘志敏, 沈美娟. 黄花菜不同品种产量构成性状的研究[J]. 湖南农学院学报, 1990(2): 181-185. doi: 10.13331/j.cnki.jhau.1990.02.013.]
    [32] LIU H, ZHOU X R, YU X N, et al. Current situation and prospect of identification and evaluation of quality traits in crop germplasm resources[J]. J Plant Gene Resour, 2014, 15(1): 215-221.[刘浩, 周闲容, 于晓娜, 等. 作物种质资源品质性状鉴定评价现状与展望[J]. 植物遗传资源学报, 2014, 15(1): 215-221. doi: 10.13430/j.cnki.jpgr. 2014.01.033.]
    [33] ZHENG P F, ZHANG M, WANG Z X, et al. Comprehensive evaluation of the fruit quality of the main cultivars of pear (Pyrus spp.) in North China[J]. Erwerbs-Obstbau, 2022, 64(2): 219-227. doi: 10. 1007/s10341-021-00609-y.
    [34] DANG H M. The evaluation of nutrient and functional substance for the flower buds of Hemerocallis spp.[D]. Jinzhong: Shanxi Agricultural University, 2016: 27-30.[党换梅. 萱草属植物花蕾的营养及功能性物质评价[D]. 晋中: 山西农业大学, 2016: 27-30.]
    [35] NILSSON H, NORDSTRÖM E M, ÖHMAN K. Decision support for participatory forest planning using AHP and TOPSIS[J]. Forests, 2016, 7(5): 100. doi: 10.3390/f7050100.
    [36] DENG Z Y, QU L Q, WU Y R, et al. Current progress and prospect of crop quality research[J]. Sci Sin Vitae, 2021, 51(10): 1405-1414.[邓祝云, 曲乐庆, 巫永睿, 等. 作物品质研究现状与展望[J]. 中国科学: 生命科学, 2021, 51(10): 1405-1414. doi: 10.1360/SSV-2021-0223.]
    [37] ZHENG J Z, LI H P, LAI Z F, et al. Genetic diversity of vegetable daylily germplasms in China[J]. Fujian J Agric Sci, 2018, 33(10): 1030-1038.[郑家祯, 李和平, 赖正锋, 等. 国内菜用黄花菜种质资源遗传多样性分析[J]. 福建农业学报, 2018, 33(10): 1030-1038. doi: 10.19303/j.issn.1008-0384.2018.10.004.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李洲,谭方曦,赵乙灿,张定山,洪建基,吴松海.基于黄花菜产量与品质特征的优异种质筛选及评价[J].热带亚热带植物学报,2024,32(1):82~92

Copy
Share
Article Metrics
  • Abstract:300
  • PDF: 588
  • HTML: 239
  • Cited by: 0
History
  • Received:July 11,2022
  • Online: January 26,2024
  • Published: January 20,2024
Article QR Code