Differences of Cell Wall Components and Related Enzyme Activities in Momordica charantia Fruits at Different Development Stages
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to understand the causes of fruit quality differences in Momordica charantia, the contents of cell wall components and related enzyme activities in thick flesh-type ‘LX1-3’ and thin flesh-type ‘ZK54’ were studied during fruit development. The results showed that diameter (FD), lumen diameter (FLD),pulp thickness (PT), fresh weight (FFW) and fresh weight (FDW) of fruit in ‘LX1-3’ were all higher than those in ‘ZK54’ at 17 days after flowering (DAF). The contents of cell wall components and related enzyme activities were different among cultivars. the content of water-soluble pectin in ‘LX1-3’ was higher than that of ‘ZK54’, and it was significantly positively correlated with PT, FFW, FDW. The contents of hemicellulose (HCE) and cellulose (CE) in ‘LX1-3’ were higher than those in ‘ZK54’ at 17-23 DAF. The activities of β-Gal and β-Xyl of both cultivars at 3 DAF were higher than those at the other three stages. The variation trend of PG, β-Gal and pectinase activities was consistent with that of ionic pectin and covalent pectin. The activities of β-Gal, β-Xyl and cellulase had (extremely) significantly negatively correlated with 5 growth traits, as well as PG with FD, FLD and PT. Therefore, cell wall components and enzyme activities were closely related to fruit development. β-Xyl and β-Gal played major roles in early fruit development, while HCE and CE had great influence on middle and later fruit developments.

    Reference
    [1] KHANNA P, JAIN S C, PANAGARIYA A, et al. Hypoglycemic activity of polypeptide-p from a plant source[J]. J Nat Prod, 1981, 44(6): 648-655. doi: 10.1021/np50018a002.
    [2] TAN S P, KHA T C, PARKS S E, et al. Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review[J]. Food Rev Int, 2016, 32(2): 181-202. doi: 10.1080/87559129.2015.1057843.
    [3] HUANG Y Q, WAN X J, ZHANG J Y, et al. Evaluation and genetic diversity analysis of bitter gourd based on major phenotypic traits[J]. J Shanghai Jiaotong Univ (Agric Sci), 2016, 34(2): 47-52.[黄月琴, 万新建, 张景云, 等. 苦瓜主要表型性状的评价及其遗传多样性分析[J]. 上海交通大学学报(农业科学版), 2016, 34(2): 47-52. doi: 10. 3969/J.ISSN.1671-9964.2016.02.007.]
    [4] ZHANG H M, CUI J W, YU J Z, et al. Effects of fruit development stage on nutrient contents and antioxidant capacity of Momordica charantia varieties with different fruit colors[J]. Acta Agric Jiangxi, 2022, 34(3): 179-184.[张红梅, 崔佳维, 余纪柱, 等. 果实发育期对不同果色苦瓜营养成分含量及抗氧化能力的影响[J]. 江西农业学报, 2022, 34(3): 179-184. doi: 10.19386/j.cnki.jxnyxb.2022.03.028.]
    [5] SHAH S S A, HUSSAIN M I, ASLAM M K, et al. Natural products; pharmacological importance of family cucurbitaceae: A brief review[J]. Mini Rev Med Chem, 2014, 14(8): 694-705. doi: 10. 2174/1389557514666140820113055.
    [6] KARATAŞ A, ŞAVŞATLI Y. Characterization of volatile compounds nongrafted and pumpkin-grafted bitter gourd (Momordica charantia L.)[J]. Turk J Agric For, 2022, 46(3): 327-339. doi: 10.55730/1300-011X. 3006.
    [7] LU L. Fine mapping of QTL for pulp thickness in cucumber and functional validation of candidate genes[D]. Yangzhou: Yangzhou University, 2016: 8-17.[陆璐. 黄瓜果肉厚度QTL的精细定位及候选基因功能验证[D]. 扬州: 扬州大学, 2016: 8-17.]
    [8] ZHANG B C, ZHOU Y H. Plant cell wall formation and regulation[J]. Sci Sin (Vitae), 2015, 45(6): 544-556.[张保才, 周奕华. 植物细胞壁形成机制的新进展[J]. 中国科学(生命科学), 2015, 45(6): 544-556. doi: 10.1360/N052015-00076.]
    [9] LIU J F, ZHANG H Y, PENG S A. Changes of calcium in flesh, seeds and pectin content during pear fruit development[J]. Acta Hort Sin, 2003, 30(6): 709-711.[刘剑锋, 张红艳, 彭抒昂. 梨果实发育中果肉及种子钙和果胶含量的变化[J]. 园艺学报, 2003, 30(6): 709-711. doi: 10.3321/j.issn:0513-353X.2003.06.017.]
    [10] PROCTOR A, PENG L C. Pectin transitions during blueberry fruit development and ripening[J]. J Food Sci, 1989, 54(2): 385-387. doi: 10.1111/j.1365-2621.1989.tb03088.x.
    [11] XU J Y, ZHAO Y H, ZHANG X, et al. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation[J]. Front Plant Sci, 2016, 7: 1524. doi: 10.3389/fpls.2016.01524.
    [12] PAULL R E, GROSS K, QIU Y X. Changes in papaya cell walls during fruit ripening[J]. Postharv Biol Technol, 1999, 16(1): 79-89. doi: 10. 1016/S0925-5214(98)00100-8.
    [13] LI P, LIAO K, ZHAO S R, et al. Variation of cell wall and hydrolases in apricot fruit during development and maturing process[J]. J Xinjiang Agric Univ, 2013, 36(4): 298-303.[李萍, 廖康, 赵世荣, 等. 杏果实发育成熟过程中细胞壁组分和水解酶活性的变化[J]. 新疆农业大学学报, 2013, 36(4): 298-303. doi: 10.3969/j.issn.1007-8614. 2013.04.008.]
    [14] YANG G H, LYU B Y, HAN D G, et al. Change of cell wall components and related enzyme activities during the development process of raspberry fruit[J]. North Hortic, 2016(11): 27-30.[杨国慧, 吕冰玉, 韩德果, 等. 树莓果实发育过程中细胞壁成分及相关酶活性变化[J]. 北方园艺, 2016(11): 27-30. doi: 10.11937/bfyy.201611007.]
    [15] GAO H H. Physiological and molecular mechanism of cell wall differential metabolism in loquat with red-fleshed and white-fleshed[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020: 14-23.[高欢欢. 红白果肉枇杷细胞壁代谢差异的生理分子机理[D]. 福州: 福建农林大学, 2020: 14-23.]
    [16] QIU Z H, CHEN J Y, PENG Y Q, et al. Changes in cell wall components and related enzyme activities of Canarium album during fruit development stage[J]. J Trop Subtrop Bot, 2019, 27(6): 677-683.[邱志浩, 陈晶英, 彭远琴, 等. 橄榄果实发育过程中细胞壁物质和相关酶活性变化[J]. 热带亚热带植物学报, 2019, 27(6): 677-683. doi: 10.11926/jtsb.4028.]
    [17] ZHAO S L, JIANG M F, WEI Y Y, et al. Variation of cell wall component during pear growing process[J]. J S Agric, 2013, 44(11): 1861-1865.[赵树亮, 蒋明凤, 魏媛媛, 等. 梨果实生长过程中细胞壁成分的变化分析[J]. 南方农业学报, 2013, 44(11): 1861-1865. doi: 10.3969/j:issn.2095-1191.2013.11.1861.]
    [18] BURTON R A, GIDLEY M J, FINCHER G B. Heterogeneity in the chemistry, structure and function of plant cell walls[J]. Nat Chem Biol, 2010, 6(10): 724-732. doi: 10.1038/nchembio.439.
    [19] JIA D C, BU F W, JIANG J Q, et al. Analysis of glycometabolism of ‘Hongyang’ kiwifruit during storage[J]. Hunan Agric Sci, 2021(10): 69-73.[贾德翠, 卜范文, 蒋娟琼, 等. ‘红阳’猕猴桃果实低温贮藏期糖代谢分析[J]. 湖南农业科学, 2021(10): 69-73. doi: 10.16498/j.cnki.hnnykx.2021.010.017.]
    [20] SEGONNE S M, BRUNEAU M, CELTON J M, et al. Multiscale investigation of mealiness in apple: An atypical role for a pectin methylesterase during fruit maturation[J]. BMC Plant Biol, 2014, 14(1): 375. doi: 10.1186/s12870-014-0375-3.
    [21] GROSS K C, WALLNER S J. Degradation of cell wall polysaccha- rides during tomato fruit ripening[J]. Plant Physiol, 1979, 63(1): 117-120. doi: 10.1104/pp.63.1.117.
    [22] LI Y J, ZHU X, JING Y Y, et al. Effects of the combination treatment of nitric oxide and ethephon on softening related enzyme activity of harvested tomato fruits[J]. Food Sci Technol, 2016, 41(7): 32-37.[李艳娇, 朱璇, 敬媛媛, 等. NO与乙烯利处理对番茄果实采后软化相关酶活的影响[J]. 食品科技, 2016, 41(7): 32-37. doi: 10.13684/j.cnki.spkj.2016.07.006.]
    [23] SU J, ZHUANG J P, CHEN W X. β-d-xylosidase activity in banana (Musa spp.) fruits during ripening and softening[J]. Acta Bot Boreali- Occid Sin, 2007, 27(7): 1394-1398.[苏菁, 庄军平, 陈维信. 香蕉果实成熟软化过程中β-d-木聚糖苷酶活性变化[J]. 西北植物学报, 2007, 27(7): 1394-1398. doi: 10.3321/j.issn:1000-4025.2007.07.018.]
    [24] DONG B Y. Mechanism analysis of β-glycosidase in the degradation of anthocyanins from Brunfelsia calycina and Arabidopsis thaliana[D]. Guangzhou: South China Agricultural University, 2019: 36-48.[董柏余. β-糖苷酶在鸳鸯茉莉和拟南芥花色素苷降解中的机制分析[D]. 广州: 华南农业大学, 2019: 36-48.]
    [25] TAKIZAWA A, HYODO H, WADA K, et al. Regulatory specialization of xyloglucan (XG) and glucuronoarabinoxylan (GAX) in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum)[J]. PLoS One, 2014, 9(2): e89871. doi: 10.1371/journal.pone.0089871.
    [26] CHEA S, YU D J, PARK J, et al. Fruit softening correlates with enzymatic and compositional changes in fruit cell wall during ripening in ‘Bluecrop’ highbush blueberries[J]. Sci Hort, 2019, 245: 163-170. doi: 10.1016/j.scienta.2018.10.019.
    [27] MAO L C, ZHANG S L. Role of pectolytic enzymes and cellulase during ripening and woolly breakdown in peaches[J]. Acta Hort Sin, 2001, 28(2): 107-111.[茅林春, 张上隆. 果胶酶和纤维素酶在桃果实成熟和絮败中的作用[J]. 园艺学报, 2001, 28(2): 107-111. doi: 10.3321/j.issn:0513-353X.2001.02.003.]
    [28] HUBER D J. The role of cell wall hydrolases in fruit softening[M]//JANICK J. Horticultural Reviews, Volume 5. Westport: The AVI Publishing Company, Inc, 1983: 169-219. doi: 10.1002/9781118060728. ch4.
    [29] SIDDIQUI S, BANGERTH F. Studies on cell wall mediated changes during storage of calcium-infiltrated apples[J]. Acta Hort, 1993(326): 105-113. doi: 10.17660/ActaHortic.1993.326.10.
    [30] ZHANG X R, ZHANG B C, LIU L X, et al. Correlation analysis between main fruit characters and quality characters of South China type cucumber[J]. Hubei Agric Sci, 2020, 59(S1): 389-391.[张秀荣, 张保才, 刘亮希, 等. 华南型黄瓜主要果实性状与品质性状间的相关分析[J]. 湖北农业科学, 2020, 59(S1): 389-391. doi: 10.14088/j.cnki.issn0439-8114.2020.S1.106.]
    [31] HE X M, CHEN Q H, LIN Y E. Correlation and path analysis between yield and fruit traits of south China cucumber[J]. Guangdong Agric Sci, 2001(1): 17-18.[何晓明, 陈清华, 林毓娥. 华南型黄瓜产量与果实性状的相关和通径分析[J]. 广东农业科学, 2001(1): 17-18. doi: 10.16768/j.issn.1004-874x.2001.01.008.]
    [32] YANG Y. Study on the length and width change rule of developing cucumber fruit and their correlation to the shape of other organs[D]. Yangling: Northwest A&F University, 2018: 12-24.[杨悦. 黄瓜果实发育过程纵横径变化规律及其器官形状相关性研究[D]. 杨凌: 西北农林科技大学, 2018: 12-24.]
    [33] ZHANG Y, YANG Y, TIAN L B, et al. Multiple statistics analysis of the quality traits of bitter gourd (Momordica charantia L.)[J]. Mol Plant Breed, 2015, 13(9): 2001-2010.[张燕, 杨衍, 田丽波, 等. 苦瓜品质性状的多元统计分析[J]. 分子植物育种, 2015, 13(9): 2001-2010. doi: 10.13271/j.mpb.013.002001.]
    [34] ZHANG Y C, ZHANG W G, HUANG X G, et al. The regulars of expanding and dry materials distribution of balsam pears[J]. Fujian J Agric Sci, 2005, 20(S1): 109-112.[张玉灿, 张伟光, 黄贤贵, 等. 苦瓜果实膨大与干物质的分配规律[J]. 福建农业学报, 2005, 20(S1): 109-112. doi: 10.3969/j.issn.1008-0384.2005.z1.029.]
    [35] LI S P. Transcriptome analysis of melon (Cucumis melo L.) fruit with different texture during ripening and study on XTH genes[D]. Tianjin: Tianjin University, 2017: 23-39.[李三培. 不同质构甜瓜果实成熟软化的转录组分析及XTH基因研究[D]. 天津: 天津大学, 2017: 23-39.]
    [36] LI H. The metabolism of cell wall materials and gene expression during fruit ripening and softening in Ziziphus jujuba Mill.[D]. Yangling: Northwest A&F University, 2017: 14-25.[李欢. 枣果实成熟软化的细胞壁物质代谢及其基因表达研究[D]. 杨凌: 西北农林科技大学, 2017: 14-25.]
    [37] WU B T, WANG J, QIU X, et al. Biomechanical study on hardness changes during maturation of Lingwu long jujube[J]. J Henan Agric Univ, 2020, 54(5): 770-777.[吴宝婷, 王娟, 邱雪, 等. 灵武长枣成熟过程中硬度变化的生物力学研究[J]. 河南农业大学学报, 2020, 54(5): 770-777. doi: 10.16445/j.cnki.1000-2340.2020.05.006.]
    [38] MA L, QIAO J, LÜ C J, et al. Differential analysis of pectin content and gene expression in grapes with different texture[J]. Jiangsu Agric Sci, 2022, 50(13): 64-69.[马丽, 乔军, 吕春晶, 等. 不同质地葡萄果实果胶含量及基因表达差异分析[J]. 江苏农业科学, 2022, 50(13): 64-69. doi: 10.15889/j.issn.1002-1302.2022.13.011.]
    [39] XU J, LI J, ZHANG X L, et al. Variations of cell wall components and hydrolase activity of ‘Korla fragrant pear’ during the fruit developmental stage[J]. J Fruit Sci, 2015, 32(6): 1114-1117.[许娟, 李疆, 张校立, 等. ‘库尔勒香梨’果实发育中细胞壁组分和水解酶活性的变化[J]. 果树学报2015,32(6): 1114-1117. doi: 10.13925/j.cnki.gsxb. 20150030.]
    [40] ZHANG J N, LI J H, ZHAO J H, et al. Changes in cell wall ultra- structure and components of seed-used watermelon fruit in storage[J]. J Fruit Sci, 2006, 23(2): 256-259.[张建农, 李计红, 赵建华, 等. 子瓜果实贮存期细胞壁超显微结构及相关成分的变化[J]. 果树学报, 2006, 23(2): 256-259. doi: 10.3969/j.issn.1009-9980.2006.02.023.]
    [41] XU B, ATAWULA T, ZHANG T, et al. Effects of different temperatures on the fruit softening of Xizhoumi No. 25 Hami Melon during storage[J]. Xinjiang Agric Sci, 2022, 59(5): 1135-1143.[徐斌, 阿塔吾拉·铁木尔, 张婷, 等. 不同贮藏温度对西州密25号哈密瓜果实软化的影响[J]. 新疆农业科学, 2022, 59(5): 1135-1143. doi: 10. 6048/j.issn.1001-4330.2022.05.012.]
    [42] CAO R X, XU S, LI L, et al. Changes of cell wall components and degradation enzyme activity in sweetpotato storage roots during storage[J]. J China Agric Univ, 2020, 25(5): 59-69.[曹如霞, 徐舒, 李玲, 等. 甘薯块根贮藏期间细胞壁成分及降解酶活性变化[J]. 中国农业大学学报, 2020, 25(5): 59-69. doi: 10.11841/j.issn.1007-4333.2020.05.06.]
    Related
    Cited by
Get Citation

裘波音,林珲,张前荣,李永平,温庆放,朱海生,李大忠.苦瓜果实不同发育时期细胞壁组分及相关酶活性的差异分析[J].热带亚热带植物学报,2024,32(1):134~142

Copy
Share
Article Metrics
  • Abstract:132
  • PDF: 483
  • HTML: 267
  • Cited by: 0
History
  • Received:July 08,2022
  • Online: January 26,2024
  • Published: January 20,2024
Article QR Code