Genes Related to Resin Biosynthesis in Xylem and Needle of Pinus elliottii
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to explore the genes related to pine resin biosynthesis in Pinus elliottii, a total of 12 samples of xylem at different resin collection stages and needles were used for high-throughput transcriptome sequencing. Compared with the reference genome of P. taeda, a total of 68 211 unigenes and 546 356 450 clean reads were obtained with an average mapping rate of 90.21%. The expression profiles between needles and xylem were compared in pairs. The differentially expressed genes (DEGs) were selected according to P<0.05,|log2foldchange|> 1.0, and then annotated by GO and KEGG enrichment analysis. The results showed that 133 DEGs involved in terpene synthesis, most of which were enriched in MEP pathway. Eight candidate genes related to pine resin biosynthesis were selected from the DEGs and validated by RT-qPCR, in which HMGR, DXS, TPS, ABC transporter genes were highly correlated with the rosin production. Therefore, 133 differential genes related to pine resin biosynthesis were mined through transcriptome sequencing, and among which three TPS genes and two ABC transporter genes positively regulate terpenoid synthesis.

    Reference
    [1] DING W, GU Z J, HUANG W H, et al. Evaluation of growth and adaptability of American Pinus elliottii in south Jiangxi[J]. S China For Sci, 2020, 48(5):37-40.[丁伟, 谷振军, 黄文晖, 等. 美国引种湿地松在赣南地区生长适应性评价[J]. 南方林业科学, 2020, 48(5):37-40. doi:10.16259/j.cnki.36-1342/s.2020.05.008.]
    [2] DENG L P, HUANG T, WANG Z, et al. Genetic analysis of clones and a new round breeding parents selection in the improved slash pine seed orchard[J]. For Environ Sci, 2020, 36(4):1-7.[邓乐平, 黄婷, 王哲, 等. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择[J]. 林业与环境科学, 2020, 36(4):1-7. doi:10.3969/j.issn.1006-4427.2020.04.001.]
    [3] ZHUANG W Y, ZHANG Y Y, ZOU Y X. Selection for high-resin yield of slash pine and analysis of factors concerned[J]. Acta Agric Univ Jiangxi, 2007, 29(1):55-60.[庄伟瑛, 张玉英, 邹元熹. 高产脂湿地松选择和相关因子的分析[J]. 江西农业大学学报, 2007, 29(1):55-60. doi:10.3969/j.issn.1000-2286.2007.01.012.]
    [4] ZHAO Z D, WANG J, LU Y J, et al. Demand analysis of individuation pine resources for fine chemical utilization of pine oleoresin[J]. Chem Ind For Prod, 2021, 41(3):1-10.[赵振东, 王婧, 卢言菊, 等. 松脂精细化学利用对个性化松树资源的需求分析[J]. 林产化学与工业, 2021, 41(3):1-10. doi:10.3969/j.issn.0253-2417.2021.03.001.]
    [5] HAMBERGER B, OHNISHI T, HAMBERGER B, et al. Evolution of diterpene metabolism:Sitka spruce CYP720B4 catalyzes multiple oxidetions in resin acid biosynthesis of conifer defense against insects[J]. Plant Physiol, 2011, 157(4):1677-1695. doi:10.1104/pp.111.185843.
    [6] BAI Q S, HE B X, CAI Y L, et al. Transcriptomic and metabolomic analyses reveal several critical metabolic pathways and candidate genes involved in resin biosynthesis in Pinus massoniana [J]. Mol Genet Genom, 2020, 295(2):327-341. doi:10.1007/s00438-019-01624-1.
    [7] NIU S H, LI J, BO W H, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1):204-217. doi:10.1016/j.cell.2021.12.006.
    [8] DING X Y, DIAO S, LUAN Q F, et al. A transcriptome-based association study of growth, wood quality, and oleoresin traits in a slash pine breeding population[J]. PLoS Genet, 2022, 18(2):e1010017. doi:10.1371/journal.pgen.1010017.
    [9] DIAO S, DING X Y, LUAN Q F, et al. A complete transcriptional landscape analysis of Pinus elliottii Engelm. Using third-generation sequencing and comparative analysis in the Pinus phylogeny[J]. Forests, 2019, 10(11):942. doi:10.3390/f10110942.
    [10] DE OLIVEIRA JUNKES C F, DE ARAÚJO JÚNIOR A T, DE LIMA J C, et al. Resin tapping transcriptome in adult slash pine (Pinus elliottii var. elliottii)[J]. Ind Crops Prod, 2019, 139:111545. doi:10.1016/j. indcrop.2019.111545.
    [11] CHEN Y, XIE Q D, TANG Y Q, et al. Advances in synthetic metabolic pathways and rate-limiting enzymes of plant terpene[J]. Mol Plant Breed, 2018, 16(7):2371-2379.[陈瑶, 谢琴鼎, 唐亚琴, 等. 植物萜类合成代谢途径及限速酶的研究进展[J]. 分子植物育种, 2018, 16(7):2371-2379. doi:10.13271/j.mpb.016.002371.]
    [12] CHU W, LIU Y Y, LI Y B, et al. Advances on plant 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGR) genes[J]. Curr Biotechnol, 2018, 8(2):93-102.[褚蔚, 刘洋洋, 李永波, 等. 植物3-羟基-3-甲基戊二酰辅酶A还原酶基因研究进展[J]. 生物技术进展, 2018, 8(2):93-102. doi:10.19586/j.2095-2341.2017.0126.]
    [13] WANG Y, YUAN X L, MEI H, et al. Transcriptome and gene expression analysis revealed mechanisms for producing high oleoresin yields from Simao pine (Pinus kesiya var. langbianensis)[J]. Plant Omics J, 2018, 11(1):42-49. doi:10.21475/poj.11.01.18.pne1085.
    [14] LIU Q H, ZHOU Z C, WEI Y C, et al. Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of Masson pine (Pinus massoniana Lamb.) by transcriptomic analysis[J]. PLoS One, 2015, 10(7):e0132624. doi:10.1371/journal.pone.0132624.
    [15] ZHU P H, CHEN Y, JI K S. A review of terpene synthases and genes in Pinaceae[J]. J Nanjing For Univ (Nat Sci), 2021, 45(3):233-244.[朱沛煌, 陈妤, 季孔庶. 松科植物萜类合成酶及其基因家族研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(3):233-244. doi:10.12302/j.issn.1000-2006.202004027.]
    [16] CELEDON J M, BOHLMANN J. Oleoresin defenses in conifers:chemical diversity, terpene synthases and limitations of oleoresin defense under climate change[J]. New Phytol, 2019, 224(4):1444-1463. doi:10.1111/nph.15984.
    [17] CHEN X E. Identification and functional analysis of Pt, TPS and P450 genes in terpenoid synthesis pathway of loblolly pine[D]. Xi'an:Shaanxi Normal University, 2017:19-35.[陈小娥. 火炬松萜类合成途径中PTTPSP450基因的鉴定与功能分析[D]. 西安:陕西师范大学, 2017:19-35.]
    [18] MEI L N, LI Z C, YAN Y J, et al. Identification and functional study of oleoresin terpenoid biosynthesis-related genes in masson pine (Pinus massoniana L.) based on transcriptome analysis[J]. Tree Genet Genom, 2020, 16(4):53. doi:10.1007/s11295-020-01448-w.
    [19] CHEN D B, WANG J Y, XIAO C W, et al. Research progress in structure of ABC transporters and their function in pathogenic fungi[J]. Prog Biochem Biophys, 2021, 48(3):309-316.[陈道波, 王教瑜, 肖琛闻, 等. ABC转运蛋白结构及在植物病原真菌中的功能研究进展[J]. 生物化学与生物物理进展, 2021, 48(3):309-316. doi:10.16476/j.pibb.2020.0238.]
    [20] BRAZ A S K, FINNEGAN J, WATERHOUSE P, et al. A plant orthologue of RNase L inhibitor (RLI) is induced in plants showing RNA interference[J]. J Mol Evol, 2004, 59(1):20-30. doi:10.1007/s00239-004-2600-4.
    [21] WESTBROOK J W, RESENDE JR M F R, MUNOZ P, et al. Association genetics of oleoresin flow in loblolly pine:Discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential[J]. New Phytol, 2013, 199(1):89-100. doi:10.1111/nph.12240.
    [22] ZHOU C C, LI Y L, WANG Z, et al. Screening and expression analysis of different genes for oleoresin production in the specific period of Pinus elliottii×P. caribaea by RNA-Seq technology[J]. Bull Bot Res, 2021, 41(3):419-428.[周晨晨, 李义良, 王哲, 等. 基于RNA-Seq技术的湿加松特定时期产脂差异基因筛选及表达分析[J]. 植物研究, 2021, 41(3):419-428. doi:10.7525/j.issn.1673-5102.2021.03.012.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张文娟,谷振军,胡珊,张志红,李火根,杨春霞.湿地松木质部和针叶松脂合成基因分析[J].热带亚热带植物学报,2023,31(4):531~540

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 17,2022
  • Revised:July 25,2022
  • Online: August 04,2023
  • Published: July 20,2023
Article QR Code