Effect of Precipitation Exclusion on Physiological Characteristics of Fine Roots of Cunninghamia lanceolata Saplings
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to reveal the response mechanism of Cunninghamia lanceolata to drought in subtropical region, the physiological characteristics of fine roots under precipitation exclusion were studied at the National Field Scientific Observation and Research Station of Forest Ecosystem in Sanming, Fujian. The results showed that soil moisture under precipitation exclusion decreased significantly (P < 0.05) compared with the control, but the contents of superoxide anion radical and malondialdehyde in fine roots had not significant differences (P > 0.05), indicating that the fine roots of Chinese fir maintained a low level of membrane lipid oxidation damage. The contents of proline, glutathione (GSH) and hydrogen peroxide (H2O2) increased significantly compared with the control (P < 0.05), indicating that Chinese fir was subjected to some degree of drought stress and self-regulation. GSH content significantly increased to some extent due to the accumulation of H2O2 caused by long-term precipitation exclusion, and there was a significant positive correlation between H2O2 and GSH (P < 0.01). Compared with the control, precipitation exclusion decreased the contents of endogenous hormones, such as cytokinin and indoleacetic acid, but they had not significantly correlated with the growth regulation of Chinese fir. In addition, the activity of superoxide dismutase under precipitation exclusion decreased by 21.5% (P < 0.05), and peroxidase activity increased by 16.7% (P < 0.05). However, the effect of antioxidant enzyme system on water deficit adaptation in fine roots of Chinese fir was weak. Therefore, Chinese fir could effectively adapt to the significant decrease of soil moisture under 50% precipitation exclusion through comprehensive regulation of non-enzymatic substances such as osmotic substances and endogenous hormones in fine roots.

    Reference
    [1] IPCC. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2021: 17.
    [2] ZHOU G Y, ZHOU L Y, SHAO J J, et al. Effects of extreme drought on terrestrial ecosystems: Review and prospects[J]. Chin J Plant Ecol, 2020, 44(5): 515-525. 周贵尧, 周灵燕, 邵钧炯, 等. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. doi: 10.17521/cjpe.2019.0317.
    [3] LUO D D, WANG C K, JIN Y. Stomatal regulation of plants in response to drought stress[J]. Chin J Appl Ecol, 2019, 30(12): 4333-4343. 罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 2019, 30(12): 4333-4343. doi: 10.13287/j.1001-9332. 201912.004.
    [4] TARDIEU F, SIMONNEAU T, MULLER B. The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach[J]. Annu Rev Plant Biol, 2018, 69: 733-759. doi: 10.1146/ annurev-arplant-042817-040218.
    [5] HUANG H X, YANG Q Q, CUI P, et al. Changes in morphological and physiological characteristics of Gymnocarpos przewalskii roots in response to water stress[J]. Acta Prat Sin, 2021, 30(1): 197-207. 黄海霞, 杨琦琦, 崔鹏, 等. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197-207. doi: 10.11686/cyxb 2020057.
    [6] CHONG P F, LI H Y, LI Y. Physiological responses of seedling roots of the desert plant Reaumuria soongorica to drought stress[J]. Acta Prat Sin, 2015, 24(1): 72-80. 种培芳, 李航逸, 李毅. 荒漠植物红砂根系对干旱胁迫的生理响应[J]. 草业学报, 2015, 24(1): 72-80. doi: 10.11686/cyxb20150110.
    [7] WILLIAMS A, DE VRIES F T. Plant root exudation under drought: implications for ecosystem functioning[J]. New Phytol, 2020, 225(5): 1899-1905. doi: 10.1111/nph.16223.
    [8] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell Environ, 2010, 33(4): 453-467. doi: 10.1111/j.1365-3040.2009.02041.x.
    [9] WU Y B, YE B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecol Sin, 2016, 36(2): 403-410. 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2): 403-410. doi: 10.5846/stxb201409201862.
    [10] WANG X. Effects of soil water contents on carbohydrates partitioning and reactive oxygen species metabolism in different organs of Robinia pseudoacacia[D]. Yangling: Northwest Agricultural & Forest University, 2014. 王昕. 土壤含水量对刺槐不同器官中碳水化合物分配及活性氧代谢的影响[D]. 杨凌: 西北农林科技大学, 2014.
    [11] MEIER I C, LEUSCHNER C. Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient[J]. Glob Change Biol, 2008, 14(9): 2081-2095. doi: 10.1111/j.1365-2486.2008.01634.x.
    [12] WANG Y. Physiological characteristics and key redox couples in Ziziphus jujuba Mill. var. spinosa adapted to drought[D]. Beijing: University of Chinese Academy of Sciences, 2016. 王勇. 酸枣适应干旱的生理特征和氧化还原特征物质研究[D]. 北京: 中国科学院研究生院, 2016.
    [13] SHAN C J. Metabolism of glutathione and ascorbate and the signal function of Ja in regulating glutathione and ascorbate metabolism in Agropyron cristatum under drought stress[D]. Yangling: Northwest Agricultural & Forest University, 2010. 单长卷. 干旱胁迫下冰草AsA、GSH代谢及茉莉酸的信号调控作用[D]. 杨凌: 西北农林科技大学, 2010.
    [14] ZHONG B Y, XIONG D C, SHI S Z, et al. Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings[J]. Chin J Appl Ecol, 2016, 27(9): 2807-2814. 钟波元, 熊德成, 史顺增, 等. 隔离降水对杉木幼苗细根生物量和功能特征的影响[J]. 应用生态学报, 2016, 27(9): 2807-2814. doi: 10.13287/j.1001-9332.201609.023.
    [15] LI R X. Fine root biomass, morphology, and C and N concentration response to thinning in a Pinus massoniana plantation[D]. Nanjing: Nanjing Forestry University, 2014. 李瑞霞. 间伐对马尾松细根生物量、形态和碳氮含量的影响[D]. 南京: 南京林业大学, 2014.
    [16] HASIBEDER R, FUCHSLUEGER L, RICHTER A, et al. Summer drought alters carbon allocation to roots and root respiration in mountain grassland[J]. New Phytol, 2015, 205(3): 1117-1127. doi: 10. 1111/nph.13146.
    [17] LI P, ZHOU H M, FANG Z Z. Ozone pollution, nitrogen addition, and drought stress interact to affect non-structural carbohydrates in the leaves and fine roots of poplar[J]. Environ Sci, 2021, 42(2): 1004-1012. 李品, 周慧敏, 冯兆忠. 臭氧污染、氮沉降和干旱胁迫交互作用对杨树叶和细根非结构性碳水化合物的影响[J]. 环境科学, 2021, 42(2): 1004-1012. doi: 10.13227/j.hjkx.202007213.
    [18] QUAN W L, LIU X, WANG H Q, et al. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties[J]. Front Plant Sci, 2015, 6: 1256. doi: 10.3389/fpls.2015. 01256.
    [19] ZHAO Z C, LUO Y, HUANG J B. Global warming and abrupt climate change[J]. Climate Change Res, 2021, 17(1): 114-120. 赵宗慈, 罗勇, 黄建斌. 全球变暖与气候突变[J]. 气候变化研究进展, 2021, 17(1): 114-120. doi: 10.12006/j.issn.1673-1719.2020.180.
    [20] DAI A G. Increasing drought under global warming in observations and models[J]. Nat Climate Change, 2013, 3(1): 52-58. doi: 10.1038/nclimate1633.
    [21] CHEN G S, YANG Z J, GAO R, et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China[J]. For Ecol Manage, 2013, 300: 68-76. doi: 10.1016/j.foreco.2012.07.046.
    [22] DELAHAYE C H, ALONSO E E. Soil heterogeneity and preferential paths for gas migration[J]. Eng Geol, 2002, 64(2/3): 251-271. doi: 10.1016/S0013-7952(01)00104-1.
    [23] KE D S, WANG A G, SUN G C, et al. The effect of active oxygen on the activity of ACC synthase induced by exogenous IAA[J]. Acta Bot Sin, 2002, 44(5): 551-556.
    [24] PROCHAZKOVA D, SAIRAM R K, SRIVASTAVA G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Sci, 2001, 161(4): 765-771. doi: 10.1016/ S0168-9452(01)00462-9.
    [25] DHINDSA R S, PLUMB-DHINDSA P, THORPE T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. J Exp Bot, 1981, 32(1): 93-101. doi: 10.1093/jxb/32.1.93.
    [26] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2): 248-254. doi: 10.1016/ 0003-2697(76)90527-90523.
    [27] TROLL W, LINDSLEY J. A photometric method for the determination of proline[J]. J Biol Chem, 1955, 215(2): 655-660. doi: 10.1016/ S0021-9258(18)65988-5.
    [28] KAMPFENKEL K, VANMONTAGU M, INZE D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J]. Anal Biochem, 1995, 225(1): 165-167. doi: 10.1006/abio.1995.1127.
    [29] GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiol, 1977, 59(2): 309-314. doi: 10.1104/pp.59.2.309.
    [30] KRAUS T E, FLETCHER R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved?[J]. Plant Cell Physiol, 1994, 35(1): 45-52. doi: 10.1093/ oxfordjournals.pcp.a078569.
    [31] KOCHHAR S, KOCHHAR V K, KHANDUJA S D. Changes in the pattern of isoperoxidases during maturation of grape berries CV Gulabi as affected by ethephon (2-chloroethyl) phosphonic acid[J]. Am J Enol Vitic, 1979, 30: 275-277.
    [32] KHATUN S, ALI M B, HAHN E J, et al. Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants[J]. Environ Exp Bot, 2008, 64(3): 279-285. doi: 10. 1016/j.envexpbot.2008.02.004.
    [33] DINIS T C P, MADEIRA V M C, ALMEIDA L M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers[J]. Arch Biochem Biophys, 1994, 315(1): 161-169. doi: 10.1006/abbi.1994.1485.
    [34] VOESENEK L A C J, RIJNDERS J H G M, PEETERS A J M, et al. Plant hormones regulate fast shoot elongation under water: From genes to communities[J]. Ecology, 2004, 85(1): 16-27. doi: 10.1890/02-740.
    [35] WANG X, HU H L, HU T X, et al. Effects of drought stress on the osmotic adjustment and active oxygen metabolism of Phoebe zhennan seedlings and its alleviation by nitrogen application[J]. Chin J Plant Ecol, 2018, 42(2): 240-251. 王曦, 胡红玲, 胡庭兴, 等. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. doi: 10.17521/cjpe.2017.0225.
    [36] WANG X C, SAMO N, LI L M, et al. Root distribution and its impacts on the drought tolerance capacity of hybrid rice in the Sichuan Basin area of China[J]. Agronomy, 2019, 9(2): 79. doi: 10.3390/agronomy9020079.
    [37] LIU Z J, GUO Y K, LIN S H, et al. Effects of exogenous hydrogen peroxide on ultrastructure of chloroplasts and activities of antioxidant enzymes in greenhouse-ecotype cucumber under drought stress[J]. Acta Hort Sin, 2009, 36(8): 1140-1146. 刘忠静, 郭延奎, 林少航, 等. 外源过氧化氢对干旱胁迫下温室黄瓜叶绿体超微结构和抗氧化酶的影响[J]. 园艺学报, 2009, 36(8): 1140-1146. doi: 10.16420/j. issn.0513-353x.2009.08.008.
    [38] YU L, MA H L. The endogenous hormone level and drought adaptability of four Kentucky bluegrass species in Gansu, China[J]. J Desert Res, 2015, 35(1): 182-188. 俞玲, 马晖玲. 甘肃几种早熟禾内源激素水平及干旱适应性[J]. 中国沙漠, 2015, 35(1): 182-188. doi: 10.7522/j.issn.1000-694X.2013.00451.
    [39] ZHOU Y F, WANG D Q, LU Z B, et al. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum[J]. Sci Agric Sin, 2014, 47(4): 655-663. 周宇飞, 王德权, 陆樟镳, 等. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响[J]. 中国农业科学, 2014, 47 (4): 655-663. doi: 10.3864/j.issn.0578-1752.2014.04.005.
    [40] LÜ D. ATHK1 is involved in the signal transduction of ABA-induced stomatal closure[D]. Kaifeng: Henan University, 2012. 吕东. ATHK1参与ABA诱导气孔关闭的信号转导过程[D]. 开封: 河南大学, 2012.
    [41] LI J. Response of stomatal conductance and phytohormones of leaves to vapor pressure deficit in some species of plants[D]. Ji'nan: Shandong University, 2014. 李静. 几种植物叶片气孔导度与植物激素对大气湿度的响应[D]. 济南: 山东大学, 2014.
    [42] ZHANG H Y, DUAN W, XIE B T, et al. Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato[J]. Acta Agron Sin, 2018, 44(1): 126-136. 张海燕, 段文学, 解备涛, 等. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系[J]. 作物学报, 2018, 44(1): 126-136. doi: 10.3724/SP.J.1006.2018.00126.
    [43] HE J L, ZHAO S Q, WANG Y N, et al. Response of endogenous hormones of tobacco to drought stress[J]. Chin Agric Sci Bull, 2015, 31(30): 205-209. 何俊龙, 赵世钦, 王彦楠, 等. 烟草内源激素对干旱胁迫响应的研究进展[J]. 中国农学通报, 2015, 31(30): 205-209.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈心怡,吴晨,黄锦学,熊德成,杨智杰.隔离降水对杉木幼树细根生理特征的影响[J].热带亚热带植物学报,2023,31(6):835~844

Copy
Share
Article Metrics
  • Abstract:139
  • PDF: 480
  • HTML: 302
  • Cited by: 0
History
  • Received:May 25,2022
  • Online: November 24,2023
  • Published: November 20,2023
Article QR Code