Expression of Antimicrobial Pepetides in Microalgae for Aquaculture and Its Preliminary Application
Author:
Fund Project:

the Featured Institute Service Projects from the Institute of Hydrobiology, the Chinese Academy of Sciences (Y85Z061601); National Key R&D Program of China (2018YFD0901500)

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To understand the roles of antimicrobial peptides expressed in microalgae for aquaculture, expression vectors containing Cath-1a (from rainbow trout) gene were constructed and introduced to Nannochloropsis oceanica, N. limnetica and Phaeodactylum tricornutum, respectively. Randomly selected transformants were confirmed by PCR and Western Blot. Positive clones were used for the in vitro bacteriostatic experiments, and some lines were used as additives to feed zebrafish in order to test the effect of different nutrients on the immune system of fish. The results showed that all the three algal strains had successfully expressed exogenous antimicrobial peptides. Only P. tricornutum showed a bacteriostatic effect on Edwardsiella tarda, a common pathogenic bacterium in aquaculture, and there was no significant difference in the bacteriostatic effect between the wild-type and transformants of the three species of microalgae. The growth of zebrafish fed with algae as additives had no significant difference compared with the control (without additives). The expression levels of antioxidant and immune related genes together with the content of malondialdehyde (MDA) in the liver of zebrafish indicated that zebrafish fed with additives showed stronger antioxidant and anti-inflammatory ability than the control, and expression of antimicrobial peptides (PtC, a wild-type P. tricornutum strain Pt1 transformant expressing Cath-1a gene) could further enhance the immunity of zebrafish. In addition, the anti-inflammatory capacity of the group with Pt6 (a wild-type P. tricornutum strain with high fucoxanthin content) additives is more significant than that of the group with PtC additives, which indicated that fucoxanthin and eicosapentaenoic acid (EPA) in P. tricornutum might enhance disease resistance of zebrafish.

    Reference
    [1] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylgly-cerols as feedstocks for biofuel production:perspectives and advances[J]. Plant J, 2008, 54(4):621-639. doi:10.1111/j.1365-313X.2008.03492.x.
    [2] Sørensen M, Berge G M, Reitan K I, et al. Microalga Phaeo-dactylum tricornutum in feed for Atlantic salmon (Salmo salar) effect on nutrient digestibility, growth and utilization of feed[J]. Aquaculture, 2016, 460:116-123. doi:10.1016/j.aquaculture.2016.04.010.
    [3] Freire I, Cortina-Burgueño A, Grille P, et al. Nannochlo-ropsis limnetica:A freshwater microalga for marine aquaculture[J]. Aquaculture, 2016, 459:124-130. doi:10.1016/j.aquaculture.2016.03. 015.
    [4] Bowler C, Allen A E, Badger J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219):239-244. doi:10.1038/nature07410.
    [5] Vieler A, Wu G X, Tsai C H, et al. Genome, functional gene anno-tation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779[J]. PLoS Genet, 2012, 8(11):e1003064. doi:10.1371/journal.pgen.1003064.
    [6] Li F J, Gao D W, Hu H H. High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product[J]. Biosci Biotechnol Biochem, 2014, 78(5):812-817. doi:10.1080/09168451.2014.905184.
    [7] Zhang C Y, Hu H H. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation[J]. Mar Genom, 2014, 16:63-66. doi:10.1016/j.margen.2013.10.003.
    [8] Karas B J, Diner R E, Lefebvre S C, et al. Designer diatom episomes delivered by bacterial conjugation[J]. Nat Commun, 2015, 6:6925. doi:10.1038/ncomms7925.
    [9] Chen Y W, Hu H H. High efficiency transformation by electro-poration of the freshwater alga Nannochloropsis limnetica[J]. World J Microbiol Biotechnol, 2019, 35(8):119. doi:10.1007/s11274-019-2695-9.
    [10] HU Y Y, YAO B. Advance in research of fish antimicrobial peptides[J]. J Wuhan Inst Technol, 2020, 42(1):8-17.[胡媛媛, 姚波. 鱼类抗菌肽的研究进展[J]. 武汉工程大学学报, 2020, 42(1):8-17. doi:10. 19843/j.cnki.CN42-1779/TQ.201908002.]
    [11] Gordon Y J, Romanowski E G, Mcdermott A M. A review of antimicrobial peptides and their therapeutic potential as anti-infec tive drugs[J]. Curr Eye Res, 2005, 30(7):505-515. doi:10.1080/02713680590968637.
    [12] Hancock R E W, Diamond G. The role of cationic antimicrobial peptides in innate host defences[J]. Trends Microbiol, 2000, 8(9):402-410. doi:10.1016/S0966-842X(00)01823-0.
    [13] Yang D, Biragyn A, Hoover D M, et al. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neuro-toxin in host defense[J]. Annu Rev Immunol, 2004, 22:181-215. doi:10.1146/annurev.immunol.22.012703.104603.
    [14] WU T T, YANG J. Progress in investigation of natural antimicrobial peptides and application prospect[J]. Biotechnol Bull, 2009(1):27-30.[吴甜甜, 杨洁. 天然抗菌肽的研究进展及应用前景[J]. 生物技术通报, 2009(1):27-30. doi:10.13560/j.cnki.biotech.bull.1985.2009.01. 002.]
    [15] Li Y F, Chen Z X. RAPD:A database of recombinantly-produced antimicrobial peptides[J]. Fems Microbiol Lett, 2008, 289(2):126-129. doi:10.1111/j.1574-6968.2008.01357.x.
    [16] ZHAO Y P, LI X Y, PENG T T, et al. Expression of exogenous antimicrobial peptides in Chlamydomonas reinhardtii[J]. J Hydroecol, 2021, 42(3):106-113.[赵艳苹, 李小燕, 彭婷婷, 等. 以莱茵衣藻为载体表达外源抗菌肽的研究[J]. 水生态学杂志, 2021, 42(3):106-113. doi:10.15928/j.1674-3075.202003300080.]
    [17] HU H H, GAO K S. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources[J]. Biotechnol Lett, 2003, 25(5):421-425. doi:10.1023/a:1022489108980.
    [18] Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochem Physiol Pflanzen, 1975, 167(2):191-194. doi:10.1016/S0015-3796(17)30778-3.
    [19] Yuan J P, Chen F, Liu X, et al. Carotenoid composition in the green microalga Chlorococcum[J]. Food Chem, 2002, 76(3):319-325. doi:10.1016/S0308-8146(01)00279-5.
    [20] Lubzens E, Gibson O, Zmora O, et al. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture[J]. Aquaculture, 1995, 133(3/4):295-309. doi:10.1016/0044-8486(95)00010-Y.
    [21] Yarnold J, Karan H, Oey M, et al. Microalgal aquafeeds as part of a circular bioeconomy[J]. Trends Plant Sci, 2019, 24(10):959-970. doi:10.1016/j.tplants.2019.06.005.
    [22] Butler T, Kapoore R V, Vaidyanathan S. Phaeodactylum tricornutum:A diatom cell factory[J]. Trends Biotechnol, 2020, 38(6):606-622. doi:10.1016/j.tibtech.2019.12.023.
    [23] Barrell P J, Liew O W, Conner A J. Expressing an antibacterial protein in bacteria for raising antibodies[J]. Protein Expr Purif, 2004, 33(1):153-159. doi:10.1016/j.pep.2003.08.026.
    [24] Mu F Y, Li H, Hu Z L. Expression of tandem repeat Cecropin B in Chlamydomonas reinhardtii and its antibacterial effect[J]. Prog Biochem Biophys, 2012, 39(4):344-351. doi:10.3724/SP.J.1206.2010. 00671.
    [25] DU S H, LIU X M, WAN Q, et al. Cecropins as antimicrobial peptides[J]. Chin J Anim Nutr, 2012, 24(1):41-47.[杜淑环, 刘秀明, 万秋, 等. 天蚕素抗菌肽的研究进展[J]. 动物营养学报, 2012, 24(1):41-47. doi:10.3969/j.issn.1006-267x.2012.01.007.]
    [26] Yang D, Chertov O, Oppenheim J J. Participation of mamma-lian defensins and cathelicidins in anti-microbial immunity:Receptors and activities of human defensins and cathelicidin (LL-37)[J]. J Leukoc Biol, 2001, 69(5):691-697.
    [27] LI W C, LI S B. Application prospects of antibacterial peptides in animal husbandry industry[J]. Feed Ind, 2005, 26(16):14-16.[李文春, 李松柏. 抗菌肽在畜牧业上的应用前景[J]. 饲料工业, 2005, 26(16):14-16. doi:10.3969/j.issn.1001-991X.2005.16.003.]
    [28] Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity[J]. J Leukoc Biol, 2004, 75(1):39-48. doi:10.1189/jlb.0403147.
    [29] LIANG X M, ZENG F, ZHANG Q F, et al. Effects of combined exposure to mercury and cadmium on histology and the expression of antioxidative enzyme genes in gonads of zebrafish[J]. J Chongqing Norm Univ (Nat Sci), 2018, 35(3):59-64.[梁晓敏, 曾凤, 张群芳, 等. 汞镉联合暴露对斑马鱼性腺组织学和抗氧化酶基因表达的影响[J]. 重庆师范大学学报(自然科学版), 2018, 35(3):59-64. doi:10. 11721/cqnuj20180314.]
    [30] Jin Y X, Zhang X X, Shu L J, et al. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio)[J]. Chemosphere, 2010, 78(7):846-852. doi:10.1016/j. chemosphere.2009.11.044.
    [31] Rodríguez I, Novoa B, Figueras A. Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila[J]. Fish Shellfish Immunol, 2008, 25(3):239-249. doi:10.1016/j.fsi.2008.05.002.
    [32] Forsatkar M N, Safari O, Boiti C. Effects of social isolation on growth, stress response, and immunity of zebrafish[J]. Acta Ethol, 2017, 20(3):255-261. doi:10.1007/s10211-017-0270-7.
    [33] Salonen E M, Hovi T, Meurman O, et al. Kinetics of specific IgA, IgD, IgE, IgG, and IgM antibody responses in rubella[J]. J Med Virol, 1985, 16(1):1-9. doi:10.1002/jmv.1890160102.
    [34] Boes M, Prodeus A P, Schmidt T, et al. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection[J]. J Exp Med, 1998, 188(12):2381-2386. doi:10.1084/jem. 188.12.2381.
    [35] WEI S N, QIN Q W. Advance on lysozyme and cathepsin of fish[J]. Guangxi Sci, 2018, 25(1):32-35.[魏世娜, 秦启伟. 鱼类溶菌酶和组织蛋白酶研究进展[J]. 广西科学, 2018, 25(1):32-35. doi:10.13656/j. cnki.gxkx.20180206.002.]
    [36] Majewska M, Szczepanik M. The role of Toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation[J]. Postępy Hig Med Dośw, 2006, 60:52-63.
    [37] SHAN J L, CHENG H Y, WEN L, et al. Advances in research of TLR/MyD88/NF-κB signaling pathway in different diseases[J]. Chin Pharmacol Bull, 2019, 35(4):451-455.[单佳铃, 程虹毓, 文乐, 等. TLR/MyD88/NF-κB信号通路参与不同疾病作用机制研究进展[J]. 中国药理学通报, 2019, 35(4):451-455. doi:10.3969/j.issn.1001-1978.2019.04.002.]
    [38] ZHANG L, ZHOU Y P, LIU G W. Therapeutic effects of astragalus saponin on rats with atrophic gastritis and MyD88, TLR4 receptor[J]. Chin J Exp Trad Med Form, 2013, 19(2):226-229.[张莲, 周语平, 刘光炜. 黄芪皂苷对大鼠萎缩性胃炎的治疗作用及对MyD88, TLR4受体的影响[J]. 中国实验方剂学杂志, 2013, 19(2):226-229. doi:10.13422/j.cnki.syfjx.2013.02.067.]
    [39] LI C, YU Y, FAN Y F, et al. Effect of Shaohuang Anchang decoction on TLR4/Myd88/NF-κB signaling pathway in ulcerative colitis rats[J]. Chin J Exp Trad Med Form, 2014, 20(7):151-155.[李晨, 俞媛, 范尧夫, 等. 芍黄安肠汤对溃疡结肠炎大鼠TLR4/MyD88/NF-κB信号通路的影响[J]. 中国实验方剂学杂志, 2014, 20(7):151-155. doi:10. 13422/j.cnki.syfix.2014070151.]
    [40] QIU L H, ZHANG H H, WU J F. TNFα and receptors in fish-A review[J]. J Fishery Sci China, 2004, 11(5):482-487.[邱丽华, 张汉华, 吴进锋. 鱼类肿瘤坏死因子基因和受体的研究进展[J]. 中国水产科学, 2004, 11(5):482-487. doi:10.3321/j.issn:1005-8737.2004.05.017.]
    [41] LIU Z J, ZHAO J, BU Y X, et al. Expression patterns of IL-8 protein during bacterial LPS-induced inflammatory response in grass carp (Ctenopharyngodon idella)[J]. J Fisheries China, 2017, 41(7):1028-1035.[柳昭君, 赵杰, 卜云璇, 等. IL-8在LPS诱导的草鱼炎症过程中的表达特征[J]. 水产学报, 2017, 41(7):1028-1035. doi:10.11964/jfc.20160210278.]
    [42] Heo S J, Yoon W J, Kim K N, et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccha-ride-stimulated RAW 264.7 macrophages[J]. Food Chem Toxicol, 2010, 48(8/9):2045-2051. doi:10.1016/j.fct.2010.05.003.
    [43] LIU Z S, JIANG Y, CHEN F. Roles of arachidonic acid, docosa-hexaenoic acid and eicosapentaenoic acid in inflammation[J]. J Food Saf Qual, 2016, 7(10):3890-3899.[柳泽深, 姜悦, 陈峰. 花生四烯酸、二十二碳六烯酸和二十碳五烯酸在炎症中的作用概述[J]. 食品安全质量检测学报, 2016, 7(10):3890-3899. doi:10.19812/j.cnki. jfsq11-5956/ts.2016.10.008.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

潘玉芳,杨欢,陈怡雯,韩冬,胡晗华.利用饵料微藻表达抗菌肽及其初步应用[J].热带亚热带植物学报,2023,31(5):667~678

Copy
Share
Article Metrics
  • Abstract:353
  • PDF: 722
  • HTML: 507
  • Cited by: 0
History
  • Received:March 07,2022
  • Revised:May 10,2022
  • Adopted:August 24,2022
  • Online: September 26,2023
  • Published: September 20,2023
Article QR Code