Effects of Host Plants on Leaf Functional Traits of Mistletoes
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the differences of leaf functional traits of parasitic plants and their influencing factors, the effects of host plants on leaf functional traits of three mistletoes in Xishuangbanna were studied, and the correlation between leaf functional traits of mistletoes and host plants was analyzed. The results showed that there were significant differences in leaf functional traits of the same mistletoes from different host plants. The leaf water content (61.2%-70.1%), nitrogen concentration (9.6-16.0 g/kg), C/N (30.8-48.5), and condense tannin content (3.3%-11.0%) of Dendrophthoe pentandra displayed significant differences among its seven host species. Besides, the leaf water content (60.0%-71.7%), carbon concentration (431.3-502.3 g/kg), and condense tannin content (3.8%-9.9%) of Scurrula chingii var. yunnanensis also showed significant difference among its four host species, but there was no significant difference in functional traits of Helixanthera parasitica from its two host species. In general, leaf water content, carbon concentration, nitrogen concentration, C/N, and condense tannin content had positive significant correlation between mistletoes and their host plants. Therefore, it was concluded that host plants as nutrient resource could influence leaf functional traits of mistletoe. Mistletoe obtains water, carbon, nitrogen, and condense tannin from the host plant; but the ability to obtain different elements varies with host species.

    Reference
    [1] VIOLLE C, NAVAS M L, VILE D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5):882-892. doi:10.1111/j.0030-1299.2007.15559.x.
    [2] GEBER M A, GRIFFEN L R. Inheritance and natural selection on functional traits[J]. Int J Plant Sci, 2003, 164(S3):S21-S42. doi:10.1086/368233.
    [3] FRANCO A C, BUSTAMANTE M, CALDAS L S, et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005, 19(3):326-335. doi:10.1007/s00468-004-0394-z.
    [4] OSBORNE C P, CHARLES-DOMINIQUE T, STEVENS N, et al. Human impacts in African savannas are mediated by plant functional traits[J]. New Phytol, 2018, 220(1):10-24. doi:10.1111/nph.15236.
    [5] ZAMBRANO J, GARZON-LOPEZ C X, YEAGER L, et al. The effects of habitat loss and fragmentation on plant functional traits and functional diversity:What do we know so far?[J]. Oecologia, 2019, 191(3):505-518. doi:10.1007/s00442-019-04505-x.
    [6] ZHANG S H, ZHANG Y, XIONG K N, et al. Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors[J]. Glob Ecol Conserv, 2020, 24:e01381. doi:10.1016/j.gecco.2020.e01381.
    [7] MENEZES J, GARCIA S, GRANDIS A, et al. Changes in leaf functional traits with leaf age:When do leaves decrease their photosynthetic capacity in Amazonian trees?[J]. Tree Physiol, 2022, 42(5):922-938. doi:10.1093/TREEPHYS/TPAB042.
    [8] SCHWARTZ G, HANAZAKI N, SILVA M B, et al. Evidence for a stress hypothesis:Hemiparasitism effect on the colonization of Alchornea castaneaefolia A. Juss. (Uphorbiaceae) by galling insects[J]. Acta Amazon, 2003, 33(2):275-280. doi:10.1590/1809-4392200332280.
    [9] BURGHARDT K T. Nutrient supply alters goldenrod's induced response to herbivory[J]. Funct Ecol, 2016, 30(11):1769-1778. doi:10.1111/1365-2435.12681.
    [10] DAVIDSON-LOWE E, SZENDREI Z, ALI J G. Asymmetric effects of a leaf-chewing herbivore on aphid population growth[J]. Ecol Entomol, 2019, 44(1):81-92. doi:10.1111/een.12681.
    [11] CASTAGNEYROL B, KOZLOV M V, POEYDEBAT C, et al. Associational resistance to a pest insect fades with time[J]. J Pest Sci, 2020, 93(1):427-437. doi:10.1007/s10340-019-01148-y.
    [12] KLAIBER J, NAJAR-RODRIGUEZ A J, PISKORSKI R, et al. Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect[J]. Planta, 2013, 237(1):29-42. doi:10.1007/s00425-012-1750-7.
    [13] ZHENG S X, LI W H, LAN Z C, et al. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity[J]. Sci Rep, 2015, 5:18163. doi:10.1038/srep18163.
    [14] DESCOMBES P, KERGUNTEUIL A, GLAUSER G, et al. Plant physical and chemical traits associated with herbivory in situ and under a warming treatment[J]. J Ecol, 2020, 108(2):733-749. doi:10.1111/1365-2745.13286.
    [15] RUIZ-GUERRA B, GARCÍA A, VELÁZQUEZ-ROSAS N, et al. Plant-functional traits drive insect herbivory in a tropical rainforest tree community[J]. Perspect Plant Ecol Evol Syst, 2021, 48:125587. doi:10.1016/j.ppees.2020.125587.
    [16] EKHOLM A, FATICOV M, TACK A J M, et al. Herbivory in a changing climate:Effects of plant genotype and experimentally induced variation in plant phenology on two summer-active lepidopteran herbivores and one fungal pathogen[J]. Ecol Evol, 2022, 12(1):e8495. doi:10.1002/ECE3.8495.
    [17] AGRAWAL A A. Macroevolution of plant defense strategies[J]. Trends Ecol Evol, 2007, 22(2):103-109. doi:10.1016/j.tree.2006.10.012.
    [18] HANLEY M E, LAMONT B B, FAIRBANKS M M, et al. Plant structural traits and their role in anti-herbivore defence[J]. Perspect Plant Ecol Evol Syst, 2007, 8(4):157-178. doi:10.1016/j.ppees.2007.01.001.
    [19] CARMONA D, LAJEUNESSE M J, JOHNSON M T J. Plant traits that predict resistance to herbivores[J]. Funct Ecol, 2011, 25(2):358-367. doi:10.1111/j.1365-2435.2010.01794.x.
    [20] ESKELINEN A, HARRISON S, TUOMI M. Plant traits mediate consumer and nutrient control on plant community productivity and diversity[J]. Ecology, 2012, 93(12):2705-2718. doi:10.1890/12-0393.1.
    [21] LORANGER J, MEYER S T, SHIPLEY B, et al. Predicting invertebrate herbivory from plant traits:Evidence from 51 grassland species in experimental monocultures[J]. Ecology, 2012, 93(12):2674-2682. doi:10.1890/12-0328.1.
    [22] IBANEZ S, MANNEVILLE O, MIQUEL C, et al. Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers[J]. Oecologia, 2013, 173(4):1459-1470. doi:10.1007/s00442-013-2738-0.
    [23] AUKEMA J E. Vectors, viscin, and Viscaceae:Mistletoes as parasites, mutualists, and resources[J]. Front Ecol Environ, 2003, 1(4):212-219. doi:10.1890/1540-9295(2003)001[0212:VVAVMA]2.0.CO;2.
    [24] MATHIASEN R L, NICKRENT D L, SHAW D C, et al. Mistletoes:Pathology, systematics, ecology, and management[J]. Plant Dis, 2008, 92(7):988-1006. doi:10.1094/PDIS-92-7-0988.
    [25] MAUL K, KRUG M, NICKRENT D L, et al. Morphology, geographic distribution, and host preferences are poor predictors of phylogenetic relatedness in the mistletoe genus Viscum L.[J]. Mol Phylogenet Evol, 2019, 131:106-115. doi:10.1016/j.ympev.2018.10.041.
    [26] WATSON D M. Mistletoe:A keystone resource in forests and woodlands worldwide[J]. Annu Rev Ecol Syst, 2001, 32(1):219-249. doi:10.1146/annurev.ecolsys.32.081501.114024.
    [27] MARCH W A, WATSON D M. The contribution of mistletoes to nutrient returns:Evidence for a critical role in nutrient cycling[J]. Aust Ecol, 2010, 35(7):713-721. doi:10.1111/j.1442-9993.2009.02056.x.
    [28] GLATZEL G, GEILS B W. Mistletoe ecophysiology:Host-parasite interactions[J]. Botany, 2009, 87(1):10-15. doi:10.1139/B08-096.
    [29] WATSON D M. Determinants of parasitic plant distribution:The role of host quality[J]. Botany, 2009, 87(1):16-21. doi:10.1139/B08-105.
    [30] GRIEBEL A, WATSON D, PENDALL E. Mistletoe, friend and foe:Synthesizing ecosystem implications of mistletoe infection[J]. Environ Res Lett, 2017, 12(11):115012. doi:10.1088/1748-9326/aa8fff.
    [31] CAO M, ZOU X M, WARREN M, et al. Tropical forests of Xishuang-banna, China[J]. Biotropica, 2006, 38(3):306-309. doi:10.1111/j.1744-429.2006.00146.x.
    [32] XIAO L Y, PU Z H. An investigation on the harm of Loranthaceae in Xishuangbanna, Yunnan[J]. Acta Bot Yunnan, 1988, 10(4):423-432. 肖来云, 普正和. 西双版纳桑寄生植物的危害调查[J]. 云南植物研究, 1988, 10(4):423-432.
    [33] WANG X N, ZHANG L. Species diversity and distribution of mistletoes and hosts in four different habitats in Xishuangbanna, southwest China[J]. J Yunnan Univ (Nat Sci), 2017, 39(4):701-711. 王煊妮, 张玲. 西双版纳4种生境下的桑寄生与寄主植物多样性及分布特点[J]. 云南大学(自然科学版), 2017, 39(4):701-711. doi:10.7540/j.ynu.20160542.
    [34] AGRAWAL A A, FISHBEIN M. Plant defense syndromes[J]. Ecology, 2006, 87(Suppl 7):S132-S149. doi:10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2.
    [35] SALMINEN J P, KARONEN M. Chemical ecology of tannins and other phenolics:We need a change in approach[J]. Funct Ecol, 2011, 25(2):325-338. doi:10.1111/j.1365-2435.2010.01826.x
    [36] RICHARDS L A, GLASSMIRE A E, OCHSENRIDER K M, et al. Phytochemical diversity and synergistic effects on herbivores[J]. Phytochem Rev, 2016, 15(6):1153-1166. doi:10.1007/s11101-016-9479-8.
    [37] DALAL R C, STRONG W M, COOPER J E, et al. Relationship between water use and nitrogen use efficiency discerned by 13C discrimination and 15N isotope ratio in bread wheat grown under no-till[J]. Soil Till Res, 2013, 128:110-118. doi:10.1016/j.still.2012.07.019.
    [38] TENNAKOON K U, CHAK W H, BOLIN J F. Nutritional and isotopic relationships of selected Bornean tropical mistletoe-host associations in Brunei Darussalam[J]. Funct Plant Biol, 2011, 38(6):505-513. doi:10.1071/FP10211.
    [39] WANG L X, KGOPE B, D'ODORICO P, et al. Carbon and nitrogen parasitism by a xylem-tapping mistletoe (Tapinanthus oleifolius) along the Kalahari Transect:A stable isotope study[J]. Afr J Ecol, 2008, 46 (4):540-546. doi:10.1111/j.1365-2028.2007.00895.x.
    [40] CERNUSAK L A, PATE J S, FARQUHAR G D. Oxygen and carbon isotope composition of parasitic plants and their hosts in southwestern Australia[J]. Oecologia, 2004, 139(2):199-213. doi:10.1007/s00442-004-1506-6.
    [41] SCALON M C, WRIGHT I J. A global analysis of water and nitrogen relationships between mistletoes and their hosts:Broad-scale tests of old and enduring hypotheses[J]. Funct Ecol, 2015, 29(9):1114-1124. doi:10.1111/1365-2435.12418.
    [42] BANNISTER P, STRONG G L. Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes[J]. Oecologia, 2001, 126(1):10-20. doi:10.1007/s004420000495.
    [43] HE X F, WANG S W, KÖRNER C, et al. Water and nutrient relations of mistletoes at the drought limit of their hosting evergreen oaks in the semiarid upper Yangtze region, SW China[J]. Trees, 2021, 35(2):387-394. doi:10.1007/s00468-020-02039-x.
    [44] MATTHIES D. Closely related parasitic plants have similar host requirements and related effects on hosts[J]. Ecol Evol, 2021, 11(17):12011-12024. doi:10.1002/ece3.7967.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

苏国发,张玲.寄主植物对桑寄生植物叶片功能性状的影响[J].热带亚热带植物学报,2023,31(3):341~347

Copy
Share
Article Metrics
  • Abstract:191
  • PDF: 446
  • HTML: 300
  • Cited by: 0
History
  • Received:February 24,2022
  • Revised:April 27,2022
  • Online: May 24,2023
  • Published: May 20,2023
Article QR Code