Effects of Continuous Biochar-based Fertilizer Replacement on Soil Properties and Bacterial Community Structure in Vegetable Garden
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the field long-term effect of biochar-based fertilizer instead of chemical fertilizer, the vegetable yield, soil physical and chemical properties and bacterial community structure with biochar-based fertilizer replacement for 5 consecutive years were studied by localization experiment. The results showed that soil pH increased 0.13-0.25 after 5 years, and the contents of organic matter, alkali-hydrolyzable nitrogen and available phosphorus in soils increased 2.1%-62.2%, 5.8%-86.0% and 0.4%-103.1%, respectively. The yield of Capsella bursa-pastoris with biochar-based fertilizers increased by 4.0%-14.8% than that of the control, but the yield under 75% replacement was lower than that of 50% replacement. The indexes of Sobs, Shannon, Ace and Chao of soil bacteria with biochar-based fertilizer were higher than those of chemical fertilizer, and those under 75% replacement were the highest. Compared to chemical fertilizer, the abundances of Nitrolancea, Amycola- topsis and Gemmatimonas with biochar-based fertilizer decreased significantly, and the abundances of cellulose-degrading bacterial increased, such as Planifilum and Saccharimonadales. There were significant correlations between the abundances of Gemmatimonas, Ilumatobacteraceae, Methyloligellaceae, and soil total nitrogen, total phosphorus, organic matter. Therefore, the replacement of continuous biochar-based fertilizer significantly improved soil physical and chemical properties, and caused the changes in bacterial community structure and diversity. Appropriate replacement of biochar-based fertilizers could increase vegetable yield, but the effect of long-term continuous application on soil pH and C/N should be paid attentions, so as to avoid excessive application inhibiting nutrients uptake and utilization by crops.

    Reference
    [1] Tao Y, Zhou Y X, Hu J L. Research on decomposition of driving factors of chemical fertilizer application intensity in China and control paths[J]. Acta Agric Zhejiang, 2021, 33(10):1956-1970.[陶源, 周玉玺, 胡继连. 中国化肥施用强度的驱动因素分解与控制路径研究[J]. 浙江农业学报, 2021, 33(10):1956-1970. doi:10.3969/j.issn. 1004-1524.2021.10.20.]
    [2] ZHAO Z Z, WANG X L, LI H B, et al. Slow-release property and soil remediation mechanism of biochar-based fertilizers[J]. J Plant Nutr Fert, 2021, 27(5):886-897.[赵泽州, 王晓玲, 李鸿博, 等. 生物质炭基肥缓释性能及对土壤改良的研究进展[J]. 植物营养与肥料学报, 2021, 27(5):886-897. doi:10.11674/zwyf.20472.]
    [3] LI Y M, ZHANG X C, LIAO S Q, et al. Research progress on synergy technologies of carbon-based fertilizer and its application[J]. Trans Chin Soc Agric Mach, 2017, 48(10):1-14.[李艳梅, 张兴昌, 廖上强, 等. 生物炭基肥增效技术与制备工艺研究进展分析[J]. 农业机械学报, 2017, 48(10):1-14. doi:10.6041/j.issn.1000-1298.2017.10.001.]
    [4] ZAMA E F, REID B J, ARP H P H, et al. Advances in research on the use of biochar in soil for remediation:A review[J]. J Soils Sedi, 2018, 18(7):2433-2450. doi:10.1007/s11368-018-2000-9.
    [5] CHEW J, ZHU L L, NIELSEN S, et al. Biochar-based fertilizer:Supercharging root membrane potential and biomass yield of rice[J]. Sci Total Environ, 2020, 713:136431. doi:10.1016/j.scitotenv.2019.136431.
    [6] LI Y L, CHENG J Z, LEE X Q, et al. Effects of biochar-based fertilizers on nutrient leaching in a tobacco-planting soil[J]. Acta Geochim, 2019, 38(1):1-7. doi:10.1007/s11631-018-0307-2.
    [7] WANG S Q, LI T X, ZHENG Z C, et al. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations[J]. Sci Total Environ, 2019, 654:1023-1032. doi:10. 1016/j.scitotenv.2018.11.032.
    [8] SUN L, XUN W B, HUANG T, et al. Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments[J]. Soil Biol Biochem, 2016, 96:207-215. doi:10.1016/j.soilbio.2016.02.011.
    [9] STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biol Biochem, 2009, 41(6):1301-1310. doi:10.1016/j.soilbio.2009.03. 016.
    [10] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota:A review[J]. Soil Biol Biochem, 2011, 43(9):1812-1836. doi:10.1016/j.soilbio.2011.04.022.
    [11] CHEN K, XU X N, PENG J, et al. Effects of biochar and biochar-based fertilizer on soil microbial community structure[J]. Sci Agric Sin, 2018, 51(10):1920-1930.[陈坤, 徐晓楠, 彭靖, 等. 生物炭及炭基肥对土壤微生物群落结构的影响[J]. 中国农业科学, 2018, 51(10):1920-1930. doi:10.3864/j. issn.0578-1752.2018.10.011.]
    [12] SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Adv Agron, 2010, 105:47-82. doi:10.1016/S0065-2113(10)05002-9.
    [13] YANG J F, JIANG T, HAN X R, et al. Effects of continuous application of biochar-based fertilizer on soil characters and yield under peanuts continuous cropping[J]. Soils Fert Sci China, 2015(3):68-73.[杨劲峰, 江彤, 韩晓日, 等. 连续施用炭基肥对花生土壤性质和产量的影响[J]. 中国土壤与肥料, 2015(3):68-73. doi:10.11838/sfsc. 20150312.]
    [14] BAO S D. Soil Agrochemical Analysis[M]. Beijing:China Agriculture Press, 2007:1-495. 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2007:1-495.
    [15] WANG H H, REN T B, YANG H J, et al. Research and application of biochar in soil CO2 emission, fertility, and microorganisms:A sustainable solution to solve China's agricultural straw burning problem[J]. Sustainability, 2020, 12(5):1922.
    [16] WANG Y X, HUANG J Q, YE J, et al. Effects of different amount of biochar application on soil property and bacterial community structure in acidified tea garden[J]. J Plant Nutr Fert, 2020, 26(11):1967-1977.[王义祥, 黄家庆, 叶菁, 等. 生物炭对酸化茶园土壤性状和细菌群落结构的影响[J]. 植物营养与肥料学报, 2020, 26(11):1967-1977. doi:10.11674/zwyf.20237.]
    [17] CAO P X, LIU Y X, XU G Q, et al. Bacterial diversity in the root system soil of Oxytropis glacialis[J]. Acta Ecol Sin, 2020, 40(14):4954-4965.[曹鹏熙, 刘怡萱, 许国琪, 等. 冰川棘豆(Oxytropis glacialis)根系土壤细菌多样性特征[J]. 生态学报, 2020, 40(14):4954-4965. doi:10.5846/stxb201907311624.]
    [18] ZHANG X L, LIAO H, LI C W, et al. Effects of simultaneous application of biochar and chemical fertilizer on the vertical migration of nitrogen and phosphorus, lettuce yield and quality and soil microbial quantity under field conditions[J]. Acta Sci Circum, 2021, 41(1):21-28.[张雪莲, 廖洪, 李昌伟, 等. 田间条件下生物炭与化肥配施对土壤氮磷纵向迁移、结球生菜产量品质及土壤微生物数量的影响[J]. 环境科学学报, 2021, 41(1):21-28. doi:10.13671/j.hjkxxb.2020. 0564.]
    [19] ZHANG Q Q, SONG Y F, WU Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. J Clean Prod, 2020, 242:118435. doi:10.1016/j.jclepro.2019.118435.
    [20] BERGLUND L M, DELUCA T H, ZACKRISSON O. Activated carbon amendments to soil alters nitrification rates in Scots pine forests[J]. Soil Biol Biochem, 2004, 36(12):2067-2073. doi:10.1016/j. soilbio.2004.06.005.
    [21] ZHENG H F, ZENG Y R, WANG C J, et al. Effects of biochar on phosphate solubilizing bacteria number and soil available P content in red soil tea plantation[J]. Chin Agric Sci Bull, 2018, 34(18):114-118.[郑慧芬, 曾玉荣, 王成己, 等. 生物炭对红壤茶园溶磷细菌数量和土壤有效磷含量的影响[J]. 中国农学通报, 2018, 34(18):114-118.]
    [22] SPRINGOB G, KIRCHMANN H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils[J]. Soil Biol Biochem, 2003, 35(4):629-632. doi:10.1016/S0038-0717(03)00052-X.
    [23] SCHIPPER L A, SPARLING G P. Accumulation of soil organic C and change in C׃N ratio after establishment of pastures on reverted scrubland in New Zealand[J]. Biogeochemistry, 2011, 104(1/2/3):4958. doi:10.1007/s10533-009-9367-z.
    [24] GE S F, XU H G, JI M M, et al. Effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings[J]. Chin J Plant Ecol, 2013, 37(10):942-949.[葛顺峰, 许海港, 季萌萌, 等. 土壤碳氮比对平邑甜茶幼苗生长和碳氮分配的影响[J]. 植物生态学报, 2013, 37(10):942-949. doi:10.3724/SP.J.1258.2013.00097.]
    [25] FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar-derived carbon[J]. Sci Total Environ, 2013, 465:288-297. doi:10.1016/j.scitotenv.2013.03.090.
    [26] DU H J, YU L Y, ZHANG Y Q. Recent advance on the genus Nocardioides:A review[J]. Acta Microbiol Sin, 2012, 52(6):671-678.[杜慧竟, 余利岩, 张玉琴. 类诺卡氏属放线菌的研究进展[J]. 微生物学报, 2012, 52(6):671-678. doi:10.13343/j.cnki.wsxb.2012.06.010.]
    [27] HU J, HE X H, LI D P, et al. Progress in research of Sphingomonas[J]. Chin J Appl Environ Biol, 2007, 13(3):431-437.[胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3):431-437. doi:10.3321/j.issn:1006-687X.2007.03.030.]
    [28] BERG G, BALLIN G. Bacterial antagonists to Verticillium dahliae Kleb[J]. J Phytopathol, 1994, 141(1):99-110. doi:10.1111/j.1439-0434. 1994.tb01449.x.
    [29] XU J Y, MAO Y P. From canonical nitrite oxidizing bacteria to complete ammonia oxidizer:Discovery and advances[J]. Microbiol China, 2019, 46(4):879-890.[徐建宇, 毛艳萍. 从典型硝化细菌到全程氨氧化微生物:发现及研究进展[J]. 微生物学通报, 2019, 46(4):879-890. doi:10.13344/j.microbiol.china.180194.]
    [30] DING Y, HUANG Y, RUAN J S, et al. Selective isolation and diversity of acidophilic filamentous actinomycetes from acidic soils[J]. Acta Microbiol Sin, 2009, 49(6):710-717.[丁芸, 黄英, 阮继生, 等. 嗜酸丝状放线菌的选择性分离与多样性[J]. 微生物学报, 2009, 49(6):710-717. doi:10.3321/j.issn:0001-6209.2009.06.005.]
    [31] ZHANG X M, XIAN H Q, LI Y H, et al. Functional detection of key microorganisms in tomato stalk composting by high-throughput mass spectrometer[J]. Shandong Agric Sci, 2020, 52(4):73-78.[张小梅, 咸洪泉, 李雅华, 等. 高通量质谱检测番茄秸秆好氧堆肥中关键微生物的功能[J]. 山东农业科学, 2020, 52(4):73-78. doi:10.14083/j.issn.1001-4942.2020.04.013.]
    [32] WANG G Y, YANG Y, KONG Y L, et al. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives[J]. J Hazard Mater, 2022, 421:126809. doi:10. 1016/j.jhazmat.2021.126809.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

叶菁,王义祥,刘岑薇,林怡,黄家庆,翁伯琦.连续炭基肥替代化肥对菜园土壤性质和细菌群落结构的影响[J].热带亚热带植物学报,2023,31(4):494~502

Copy
Share
Article Metrics
  • Abstract:142
  • PDF: 757
  • HTML: 291
  • Cited by: 0
History
  • Received:February 04,2022
  • Revised:May 27,2022
  • Online: August 04,2023
  • Published: July 20,2023
Article QR Code