Metabolic in Different Tissues of Kadsura coccinea by Using Widely-targeted Metabolomics
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To improve the comprehensive utilization of Kadsura coccinea resources, the differential and highly enriched metabolic components of root, stem and leaf were analyzed by using wide range of targeted metabolomics techniques. The results showed that there were 642, 650 and 619 metabolites identified from roots, stems and leaves, respectively, in which phenolic acids, lipids, flavonoids and organic acids were dominant in quantity. There were 566 and 650 common metabolites in leaves and roots, stems and roots, respectively, of which 442 and 393 were significantly different metabolites, mainly including phenolic acids, flavonoids and lipids. Moreover, these differentially metabolites were significantly enriched in pathways of phenylpropane biosynthesis, flavone and flavonol biosynthesis. The total and secondary metabolites abundances were in the order of leaf > root > stem. The accumulation of phenolic acids, flavonoids and lipids in leaves and phenolic acids in stems were significantly higher than those in roots; while the abundance of amino acids and their derivatives, terpenoids, lignans, coumarins and alkaloids were significantly up-regulated in roots. Therefore, there were a large number of common components in roots, stems and leaves of K. coccinea. Phenolic acids, flavonoids and lipids in leaves and stems were highly enriched, and several bioactive compounds, such as neochlorogenic acid, chlorogenic acid and quercetin, were highly abundant and have high utilization value.

    Reference
    [1] Chinese Herbal Medicine Editorial Committee of National Administration of Traditional Chinese Medicine. Chinese Herbal Medica, Vol. 2[M]. Shanghai:Shanghai Science and Technology Press, 1999:895. 国家中医药管理局《中华本草》编委会. 中华本草, 第2册[M]. 上海:上海科学技术出版社, 1999:895.
    [2] SHU Y Z, CHENG L, YANG P M, et al. Advances in studies on chemical constituents in Kadsura coccinea and their pharmacological activities[J]. Chin Trad Herb Drugs, 2011, 42(4):805-813. 舒永志, 成亮, 杨培明. 黑老虎的化学成分及药理作用研究进展[J]. 中草药, 2011, 42(4):805-813. doi:http://dx.doi.org/cnki:sun:zcyo.0.2011-04-044.
    [3] SHU Y Z, CHENG L, CHO J C, et al. Chemical constituents in roots and vine stems of Kadsura coccinea[J]. Chin Trad Herb Drugs, 2012, 43(3):428-431. 舒永志, 成亮, 曺濬喆, 等. 黑老虎的化学成分研究[J]. 中草药, 2012, 43(3):428-431. doi:10.7501/j.issn.0253-2670.
    [4] LI L, YANG L J, XU Y L, et al. Studies on the chemical constituents and functional effects of Kadsura coccinea in recent ten years[J]. Chin Med Mat, 2020, 43(1):236-242. 李力, 汤立洁, 徐永莉, 等. 近十年黑老虎的化学成分及功能作用研究进展[J]. 中药材, 2020, 43(1):236-242. doi:10.13863/j.issn1001-4454.2020.01.047.
    [5] YANG Y P, HUSSAIN N, ZHANG L, et al. Kadsura coccinea:A rich source of structurally diverse and biologically important compounds[J]. Chin Herb Med, 2020, 12(3):214-223. doi:10.1016/j.chmed.2020.03.006.
    [6] PU J X, YANG L M, XIAO W L, et al. Compounds from Kadsura heteroclita and related anti-HIV activity[J]. Phytochemistry, 2008, 69(5):1266-1272. doi:10.1016/j.phytochem.2007.11.019.
    [7] YAN Z H, CHENG L, KONG L Y, et al. Chemical constituents and their anti-oxidative activiities of Kadsura coccinea[J]. Chin Trad Herb Drugs, 2013, 44(21):2969-2973. 延在昊, 成亮, 孔令义, 等. 黑老虎化学成分及其抗氧化活性研究[J]. 中草药, 2013, 44(21):2969-2973. doi:10.7501/j.issn.0253-2670.2013.21.005.
    [8] SUN J, YAO J Y, HUANG S X, et al. Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea (Lem.) A. C. Smith[J]. Food Chem, 2009, 117(2):276-281. doi:10.1016/j.foodchem.2009.04.001.
    [9] BAN N K, VAN THANH B, VAN KIEM P, et al. Dibenzocyclooctadiene lignans and lanostane derivatives from the roots of Kadsura coccinea and their protective effects on primary rat hepatocyte injury induced by t-butyl hydroperoxide[J]. Planta Med, 2009, 75(11):1253-1257. doi:10.1055/s-0029-1185537.
    [10] YANG Y, GAO J F. Volatile components and their antioxidant activities in different parts of Kadsura coccinea[J]. Guihaia, 2018, 38(7):943-952. 杨艳, 高渐飞. 冷饭团不同部位挥发性成分及抗氧化活性分析[J]. 广西植物, 2018, 38(7):943-952. doi:10.11931/guihaia.gxzw201708005.
    [11] LIAO S Q, WANG L J, XIA X H, et al. Determination and evaluation of nutritional components in stem and leaves of Kadsura cocinea[J]. Sci Technol Food Ind, 2021, 42(5):289-294. 廖苏奇, 王丽军, 夏祥华, 等. 黑老虎茎叶营养成分检测及评价[J]. 食品工业科技, 2021, 42(5):289-294. doi:10.13386/j.issn1002-0306.2020040276.
    [12] Institute of Botany, Chinese Academy of Sciences. Information System of Chinese Rare and Endangered Plants[EB/OL]. (2021-09-14). 中国科学院植物研究所. 中国珍稀濒危植物信息系统[EB/OL]. (2021-09-14). http://www.iplant.cn/rep/.
    [13] LAU W, SATTELY E S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone[J]. Science, 2015, 349 (6253):1224-1228. doi:10.1126/science.aac7202.
    [14] XU L, XU Z Z, WANG X, et al. The application of pseudotargeted metabolomics method for fruit juices discrimination[J]. Food Chem, 2020, 316(30):126278. doi:10.1016/j.foodchem.2020.126278.
    [15] SUN W L, ZHAO H P, WANG X H, et al. Analysis on differential metabolites of Cervi Cornu Pantotrichum based on metabolomics[J]. Chin Trad Herb Drugs, 2019, 50(20):5047-5053. 孙伟丽, 赵海平, 王雪华, 等. 基于代谢组学技术分析不同区段鹿茸差异代谢分子物质[J]. 中草药, 2019, 50(20):5047-5053. doi:10.7501/j.issn.0253-2670.2019.20.029.
    [16] FRAGA C G, CLOWERS B H, MOORE R J, et al. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics[J]. Anal Chem, 2010, 82(10):4165-4173. doi:10.1021/ac1003568.
    [17] THÉVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. J Proteome Res, 2015, 14(8):3322-3335. doi:10.1021/acs.jproteome.5b00354.
    [18] KUANG F Y, WU G B, ZHANG K, et al. Simultaneous determination of 5 phenolic acids involved in the phenylpropanoid pathway of postharvest wax apple[Syzygium samarangenese (Blume) Merrill & L. M. Perry] by high performance liquid chromatography[J]. Food Sci, 2020, 41(8):165-170. 匡凤元, 吴光斌, 张珅, 等. HPLC法同时测定采后莲雾果实木质素代谢途径中5种酚酸的含量[J]. 食品科学, 2020, 41(8):165-170. doi:10.7506/spkx1002-6630-20190303-014.
    [19] MA Y, WEI Y, WANG M, et al. A review of process in understand biosynthesis pathway and metabolic regulation of phenolic acids in cereals[J]. Food Sci, 2019, 40(15):269-276. 马燕, 魏媛, 王冕, 等. 谷物酚酸合成途径及代谢调控研究进展[J]. 食品科学, 2019, 40 (15):269-276. doi:10.7506/spkx1002-6630-20180918-198.
    [20] KAWADA M, OHNO Y, RI Y, et al. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice[J]. Anti-Cancer Drugs, 2001, 12(10):847-852. doi:10.1097/00001813-200111000-00009.
    [21] WANG L P, GUO D, WANG G, et al. Advancement of chlorogenic acid in traditional Chinese medicine[J]. Lishizhen Med Mat Med Res, 2011, 22(4):961-963. 王丽萍, 郭栋, 王果, 等. 中药绿原酸的研究进展[J]. 时珍国医国药, 2011, 22(4):961-963. doi:10.3969/j.issn.1008-0805.2011.04.080.
    [22] ALI N, RASHID S, NAFEES S, et al. Protective effect of chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver:An experimental approach[J]. Chem Biol Interact, 2017, 272(25):80-91. doi:10.1016/j.cbi.2017.05.002.
    [23] PANG C, SHENG Y C, JIANG P, et al. Chlorogenic acid prevents acetaminophen-induced liver injury:The involvement of CYP450 metabolic enzymes and some antioxidant signals[J]. J Zhejiang Univ Sci B, 2015, 16(7):602-610. doi:10.1631/jzus.b1400346.
    [24] NANCE C L, SIWAK E B, SHEARER W T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy[J]. J Allergy Clin Immunol, 2009, 123(2):459-465. doi:10.1016/j.jaci.2008.12.024.
    [25] NAKANISHI T, MUKAI K, YUMOTO H, et al. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors[J]. Eur J Oral Sci, 2010, 118(2):145-150. doi:10.1111/j.1600-0722.2010.00714.x.
    [26] YAN X, LIU H Q, ZOU Y Q, et al. Physiological activities and research advance in synthesis of flavonoids[J]. Chin J Org Chem, 2008, 28(9):1534-1544. 延玺, 刘会青, 邹永青, 等. 黄酮类化合物生理活性及合成研究进展[J]. 有机化学, 2008, 28(9):1534-1544.
    [27] YAO L H, JIANG Y M, SHI J, et al. Flavonoids in food and their health benefits[J]. Plant Food Hum Nurt, 2004, 59(3):113-122. doi:10.1007/s11130-004-0049-7.
    [28] CHOU C C, YANG J S, LU H F, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells[J]. Arch Pharm Res, 2010, 33(8):1181-1191. doi:10.1007/s12272-010-0808-y.
    [29] MURAKAMI A, NAKAMURA Y, TORIKAI K, et al. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice[J]. Cancer Res, 2000, 60(18):5059-5066.
    [30] REN W G, ZHANG C Y. Research progress of Schisandra chinensis and predictive analysis of Q-marker[J]. Chin Trad Herb Drugs, 2020, 51(11):3110-3116. 任伟光, 张翠英. 五味子的研究进展及质量标志物(Q-marker)的预测分析[J]. 中草药, 2020, 51(11):3110-3116. doi:10.7501/j.issn.0253-2670.2020.11.031.
    [31] QI X Z, LIU J B, CHEN J B, et al. Lignans and triterpenoids from roots of Kadsura longipedunculata[J]. Chin Trad Herb Drugs, 2017, 48(11):2164-2171. 亓新柱, 刘佳宝, 陈佳宝, 等. 南五味子根中木脂素和三萜类化学成分的研究[J]. 中草药, 2017, 48(11):2164-2171. doi:10.7501/j.issn.0253-2670.2017.11.002.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

高渐飞,周玮,杨艳.基于广泛靶向代谢组学分析黑老虎不同部位成分差异[J].热带亚热带植物学报,2023,31(3):424~432

Copy
Share
Article Metrics
  • Abstract:161
  • PDF: 376
  • HTML: 646
  • Cited by: 0
History
  • Received:December 30,2021
  • Revised:March 30,2022
  • Online: May 24,2023
  • Published: May 20,2023
Article QR Code