Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Addition on Element Concentration and Resorption in Leaves of Two Tree Species Under Cadmium Pollution
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to investigate the effects of cadmium (Cd) pollution and its combinations with elevated atmospheric CO2 concentration and nitrogen (N) addition on N and phosphorus (P) utilization strategies and Cd accumulation in leaves, two afforestation tree species (Acacia auriculiformis and Cinnamomum camphora) were selected, and the open-top chambers (OTCs) was used to construct the simulated experimental forests of the two tree species. The five treatments were control (CK), adding Cd [10 kg Cd/(hm2·a)] (Cd), adding Cd and CO2 (700 μmol/mol) (CdC), adding Cd and N [100 kg N/(hm2·a)] (CdN), adding Cd, CO2 and N (CdCN). After treatment for about 2.5 years, the mature and senescent leaves of two tree species were collected to measure the concentrations of N, P and Cd. The results showed that the foliar P concentration and P resorption efficiency had no significant changes under different treatments, but the N concentration and N resorption efficiency in leaves were significantly affected. The N concentration in leaves of two species increased under CdN treatment, and the N resorption efficiency in C. camphora leaves decreased significantly under Cd and CdN treatments. Under the treatments of Cd, CdC, CdN and CdCN, the Cd accumulation in leaves of two species, as well as the Cd/N and Cd/P ratios in mature leaves of C. camphora increased. The N and P resorption efficiencies were significantly higher, while the Cd accumulation was significantly lower in A. auriculiformis than those in C. camphora. It was demonstrated that the fast-growing leguminous N-fixing tree species (A. auriculiformis) had better N and P utilization strategies and stronger resistance to Cd accumulation than the common non-N-fixing tree species (C. camphora), suggesting that A. auriculiformis could be suitable for ecological restoration in Cd polluted forest sites.

    Reference
    [1] Ministry of Environmental Protection and Ministry of Land and Resources of the People's Republic of China. Report on the national general survey of soil contamination[EB/OL]. (2014-04-17)[2021-12-10].[环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2021-12-10]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm.]
    [2] IPCC. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2013.
    [3] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892. doi:10.1126/science. 1136674.
    [4] LUO Y Q, HUI D F, ZHANG D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis[J]. Ecology, 2006, 87(1):53-63. doi:10.1890/04-1724.
    [5] NIE M, LU M, BELL J, et al. Altered root traits due to elevated CO2:A meta-analysis[J]. Glob Ecol Biogeogr, 2013, 22(10):1095-1105. doi:10.1111/geb.12062.
    [6] JIA X, LIU T, ZHAO Y H, et al. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress[J]. Environ Sci Pollut Res, 2016, 23(1):514-526. doi:10.1007/s11356-015-5288-7.
    [7] ZHANG S M, YANG C, CHEN M M, et al. Influence of nitrogen availability on Cd accumulation and acclimation strategy of Populus leaves under Cd exposure[J]. Ecotoxicol Environ Saf, 2019, 180:439-448. doi:10.1016/j.ecoenv.2019.05.031.
    [8] BAI Z Q, ZHU L, CHANG H X, et al. Enhancement of cadmium accumulation in sweet sorghum as affected by nitrate[J]. Plant Biol, 2021, 23(1):66-73. doi:10.1111/plb.13186.
    [9] KILLINGBECK K T. The terminological jungle revisited:Making a case for use of the term resorption[J]. Oikos, 1986, 46(2):263-264. doi:10.2307/3565477.
    [10] FRESCHET G T, CORNELISSEN J H C, VAN LOGTESTIJN R S P, et al. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora:What is the link with other resource economics traits?[J]. New Phytol, 2010, 186(4):879-889. doi:10.1111/j.1469-8137. 201003228.x.
    [11] XU M P, ZHU Y F, ZHANG S H, et al. Global scaling the leaf nitrogen and phosphorus resorption of woody species:Revisiting some commonly held views[J]. Sci Total Environ, 2021, 788:147807. doi:10.1016/j.scitotenv.2021.147807.
    [12] HAN W X, TANG L Y, CHEN Y H, et al. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants[J]. PLoS One, 2013, 8(12):e83366. doi:10.1371/journal.pone.0083366.
    [13] HESSEN D O, ÅGREN G I, ANDERSON T R, et al. Carbon sequestration in ecosystems:The role of stoichiometry[J]. Ecology, 2004, 85(5):1179-1192. doi:10.1890/02-0251.
    [14] ZHENG J, SHE W W, ZHANG Y Q, et al. Nitrogen enrichment alters nutrient resorption and exacerbates phosphorus limitation in the desert shrub Artemisia ordosica [J] Ecol Evol, 2018, 8(20):9998-10007. doi:10.1002/ece3.4407.
    [15] HUANG W J, ZHOU G Y, LIU J X, et al. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition[J]. PLoS One, 2015, 10(3):e0120190. doi:10.1371/journal.pone.0120190.
    [16] LI J, FANG Y T, YOH M, et al. Organic nitrogen deposition in precipitation in metropolitan Guangzhou City of southern China[J]. Atmos Res, 2012, 113:57-67. doi:10.1016/j.atmosres.2012.04.019.
    [17] VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecol Monogr, 2012, 82(2):205-220. doi:10.1890/11-0416.1.
    [18] KILLINGBECK K T. Nutrients in senesced leaves:Keys to the search for potential resorption and resorption proficiency[J]. Ecology, 1996, 77(6):1716-1727. doi:10.2307/2265777.
    [19] TAN C Q, HUANG Z L, PENG Y H, et al. Influences of cadmium and nitrogen on the accumulation and distribution of dry matter and N, P, K, Cd in Alnus formosana[J]. Chin J Ecol, 2017, 36(7):1847-1854.[谭长强, 黄志玲, 彭玉华, 等. Cd胁迫下施N对台湾桤木(Alnus formosana)干物质及N、P、K、Cd积累与分配的影响[J]. 生态学杂志, 2017, 36(7):1847-1854. doi:10.13292/j.1000-4890.201707.016.]
    [20] THAN T A, POPOVA L P. Functions and toxicity of cadmium in plants:Recent advances and future prospects[J]. Turk J Bot, 2013, 37(1):1-13. doi:10.3906/bot-1112-16.
    [21] MCDONALD E P, ERICKSON J E, KRUGER E L. Research note:Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?[J]. Funct Plant Biol, 2002, 29(9):1115-1120. doi:10.1071/fp02007.
    [22] LONG S R. Rhizobium-legume nodulation:Life together in the underground[J]. Cell, 1989, 56(2):203-214. doi:10.1016/0092-8674(89) 90893-3.
    [23] CROWLEY K F, MCNEIL B E, LOVETT G M, et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern united states?[J]. Ecosystems, 2012, 15(6):940-957. doi:10.1007/s10021-012-9550-2.
    [24] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:A meta-analysis[J]. Glob Change Biol, 2016, 22(2):934-943. doi:10.1111/gcb.13125.
    [25] HUANG W J, ZHOU G Y, LIU J X, et al. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems[J]. Environ Pollut, 2012, 168:113-120. doi:10.1016/j.envpol.2012. 04.027.
    [26] ZHOU L L, ADDO-DANSO S D, WU P F, et al. Leaf resorption efficiency in relation to foliar and soil nutrient concentrations and stoichiometry of Cunninghamia lanceolata with stand development in southern China[J]. J Soils Sediments, 2016, 16(5):1448-1459. doi:10.1007/s11368-016-1352-2.
    [27] GÜSEWELL S. N:P ratios in terrestrial plants:Variation and functional significance[J]. New Phytol, 2004, 164(2):243-266. doi:10.1111/j. 1469-8137.2004.01192.x.
    [28] PRIETO I, QUEREJETA J I. Simulated climate change decreases nutrient resorption from senescing leaves[J]. Glob Change Biol, 2020, 26(3):1795-1807. doi:10.1111/gcb.14914.
    [29] JIANG D L, GENG Q H, LI Q, et al. Nitrogen and phosphorus resorption in planted forests worldwide[J]. Forests, 2019, 10(3):201. doi:10.3390/f10030201.
    [30] MOKHELE B, ZHAN X J, YANG G Z, et al. Review:Nitrogen assimilation in crop plants and its affecting factors[J]. Can J Plant Sci, 2012, 92(3):399-405. doi:10.4141/cjps2011-135.
    [31] CHEN Y X, HE Y F, YANG Y, et al. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils[J]. Chemosphere, 2003, 50(6):781-787. doi:10.1016/S0045-6535(02)00219-9.
    [32] YANG D P, GUO Z Q, GREEN I D, et al. Effect of cadmium accumulation on mineral nutrient levels in vegetable crops:Potential implications for human health[J]. Environ Sci Pollut Res, 2016, 23(19):19744-19753. doi:10.1007/s11356-016-7186-z.
    [33] LI L Z, WU H F, VAN GESTEL C A M, et al. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China[J]. Environ Pollut, 2014, 188:144-152. doi:10.1016/j.envpol.2014.02.003.
    [34] WANG R G, DAI S X, TANG S R, et al. Growth, gas exchange, root morphology and cadmium uptake responses of poplars and willows grown on cadmium-contaminated soil to elevated CO2[J]. Environ Earth Sci, 2012, 67(1):1-13. doi:10.1007/s12665-011-1475-0.
    [35] YI Y F. Growth dynamics and nutrient utilization strategies of selected subtropical woody species under combined treatments of rising atmospheric CO2, elevated nitrogen and cadmium[D]. Beijing:University of Chinese Academy of Sciences, 2019:1-49.[易亚凤. 大气CO2浓度升高、N添加与Cd胁迫复合影响下亚热带木本植物生长动态与养分利用策略[D]. 北京:中国科学院大学, 2019:1-49.]
    [36] YANG Y J, XIONG J, TAO L X, et al. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants:A review[J]. Sci Total Environ, 2020, 708:135186. doi:10.1016/j.scito tenv.2019.135186.
    [37] CHEN X H, OUYANG Y N, FAN Y C, et al. The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root[J]. J Exp Bot, 2018, 69(21):5279-5291. doi:10.1093/jxb/ery293.
    [38] STEVENS C J, DISE N B, GOWING D J. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates[J]. Environ Pollut, 2009, 157(1):313-319. doi:10. 1016/j.envpol.2008.06.033.
    [39] LIN Y L, CHAO Y Y, HUANG W D, et al. Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings[J]. Plant Growth Regul, 2011, 64(3):263-273. doi:10.1007/s10725-011-9567-0.
    [40] ISMAEL M A, ELYAMINE A M, MOUSSA M G, et al. Cadmium in plants:Uptake, toxicity, and its interactions with selenium fertilizers[J]. Metallomics, 2019, 11(2):255-277. doi:10.1039/c8mt00247a.
    [41] SARWAR N, SAIFULLAH, MALHI S S, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants[J]. J Sci Food Agric, 2010, 90(6):925-937. doi:10.1002/jsfa.3916.
    [42] ZHANG F, WAN X Q, ZHONG Y. Nitrogen as an important detoxification factor to cadmium stress in poplar plants[J]. J Plant Interact, 2014, 9(1):249-258. doi:10.1080/17429145.2013.819944.
    [43] YANG Y J, CHEN R J, FU G F, et al. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa)[J]. Acta Physiol Plant, 2016, 38(1):28. doi:10.1007/s11738-015-2055-9.
    [44] WAN X Q, ZHANG F, XIA X L, et al. Effects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants[J]. Sci Silv Sin, 2009, 45(7):45-51.[万雪琴, 张帆, 夏新莉, 等. 镉胁迫对杨树矿质营养吸收和分配的影响[J]. 林业科学, 2009, 45(7):45-51.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

肖美娟,尧波,张桂华,温达志.大气CO2浓度升高和氮添加对镉污染下两种树木叶片元素含量及回收率的影响[J].热带亚热带植物学报,2023,31(4):473~484

Copy
Share
Article Metrics
  • Abstract:168
  • PDF: 452
  • HTML: 282
  • Cited by: 0
History
  • Received:December 23,2021
  • Revised:February 27,2022
  • Online: August 04,2023
  • Published: July 20,2023
Article QR Code