Comparative Study on Soil Aggregate Stability and Ecological Stoichiometric Characteristics Under Two Coverage of Dicranopteris dichoyoma in Phyllostachys edulis Forest
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the effects of the Dicranopteris pedata population with different coverage on soil carbon content and nutrient status of Phyllostachys edulis forest, the stability and ecological stoichiometric characteristics of soil aggregates in P. edulis forest under 7.75% (PE) and 63.25% (DD) coverage of D. dichoyoma in Changning County, Sichuan Province were studied. The results showed that the content of large aggregates in DD plot was significantly lower than that in PE plot, which caused the decrease of aggregate stability. Moreover, the contents of total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in DD plot were significantly lower than those in PE plot, and the decrease of TP was the largest, which made significant increase of soil C: N, C: P and N: P. There was no difference in the contents of TOC, TN, TP, C: N, C: P and N: P in litter leaves and fine roots of P. edulis between DD and PE plots, but the contents of TN and TP in litter leaves and fine roots of D. dichoyoma were significantly higher than those of P. edulis in DD plots. The correlation analysis showed that the TP content in fine roots of P. edulis and D. dichoyoma were significantly positively correlated with that in soil large marcroaggregate, microaggregate and small marcroaggregate. So the high coverage of D. dichoyoma in moso bamboo forest could decrease the stability of soil aggregates, and reduced the contents of TOC, TN and TP in soil, which could increase the absorption of N and P in soil aggregates with different size classes by changing the soil ecological stoichiometric characteristics, especially the absorption of P. It should be considered to adjust the coverage of D. dichoyoma in the extensive management of moso bamboo forest in southern Sichuan, in order to ensure the long-term sustainability of soil nutrient supply.

    Reference
    [1] WANG B, WEI W J, LIU C J, et al. Biomass and carbon stock in moso bamboo forests in subtropical China:Characteristics and implications[J]. J Trop For Sci, 2013, 25(1):137-148.
    [2] LIU G L. Study on the mechanism of maintaining long-term productivity of bamboo forest[D]. Beijing:Chinese Academy of Forestry, 2009. 刘广路. 毛竹林长期生产力保持机制研究[D]. 北京:中国林业科学研究院, 2009.
    [3] FAN Y R, CHEN S L, LIN H, et al. Effects of different disturbance measures on spatial distribution patterns of understory plants in Phyllostachys edulis forests[J]. Biod Sci, 2013, 21(6):709-714. 樊艳荣, 陈双林, 林华, 等. 不同林下植被干扰措施对毛竹林下植物种群分布格局的影响[J]. 生物多样性, 2013, 21(6):709-714. doi:10.3724/sp.j.1003.2013.06020.
    [4] PAN B Z. An experiment on chemically preventing and killing off weeds mainly consisting of Dicranopteris linearis in bamboo forests[J]. J Fujian For Sci Technol, 2000, 27(2):76-78. 潘标志. 竹林化学防除芒萁骨为主杂草试验[J]. 福建林业科技, 2000, 27(2):76-78. doi:10.13428/j.cnki.fjlk.2000.02.021.
    [5] CHEN J, ZHONG Z C. Characteristics of nutrient elements cycling in fern community[J]. Acta Ecol Sin, 1991, 11(4):299-306. 陈建, 钟章成. 芒萁群落中营养元素的循环特点[J]. 生态学报, 1991, 11(4):299-306.
    [6] GUAN D S. Nutrient utilization efficiency of grassland, fernland and shrubland in Hong Kong[J]. Chin J Ecol, 1995, 14(2):23-26. 管东生. 香港草地、芒萁和灌木群落的养分利用效率[J]. 生态学杂志, 1995, 14(2):23-26.
    [7] WANG X L, ZHAO J, WU J P, et al. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China[J]. For Ecol Manag, 2011, 261 (6):1053-1060. doi:10.1016/j.foreco.2010.12.027.
    [8] CHEN J J, CHEN Z B, CHEN Z Q, et al. Dicranopteris dichotoma leaf stoichiometry in collapsing erosion areas in southwest Fujian[J]. Chin J Eco-Agric, 2018, 26(11):1710-1719. 陈俊佳, 陈志彪, 陈志强, 等. 闽西南崩岗侵蚀区芒萁叶片生态化学计量特征[J]. 中国生态农业学报, 2018, 26(11):1710-1719. doi:10.13930/j.cnki.cjea.180580.
    [9] NIE M, PENDALL E, BELL C, et al. Soil aggregate size distribution mediates microbial climate change feedbacks[J]. Soil Biol Biochem, 2014, 68:357-365. doi:10.1016/j.soilbio.2013.10.012.
    [10] WANG X, YOST R S, LINQUIST B A. Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth[J]. Soil Sci Soc Am J, 2001, 65(1):139-146. doi:10.2136/sssaj2001.651139x.
    [11] YU L, XU H N, XIAO F M, et al. The characters of soil aggregate organic carbon under different types of Phyllostachys edulis forest[J]. Acta Agric Univ Jiangxi (Nat Sci), 2017, 39(4):713-720. 余林, 徐海宁, 肖复明, 等. 不同类型毛竹林土壤团聚体有机碳特征研究[J]. 江西农业大学学报, 2017, 39(4):713-720. doi:10.13836/j.jjau.2017093.
    [12] XIAO F M, FAN S H, WANG S L, et al. Moso bamboo plantation soil aggregate stability and its impact on carbon storage[J]. J Soil Water Conserv, 2008, 22(2):131-134. 肖复明, 范少辉, 汪思龙, 等. 毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J]. 水土保持学报, 2008, 22(2):131-134. doi:10.3321/j.issn:1009-2242.2008.02.030.
    [13] YOU X H. A study on the effect of soil aggregate on organic matter in mixed forests of Chinese fir and Phyllostachys heterocycla cv. pubescens[J]. Acta Agric Univ Jiangxi, 2004, 26(4):536-539. 游秀花. 杉木毛竹混交林土壤团聚体对有机质含量的影响分析[J]. 江西农业大学学报, 2004, 26(4):536-539. doi:10.3969/j.issn.1000-2286.2004.04.013.
    [14] GAO Q W, DAI B, LUO C D, et al. Spatial heterogeneity of soil physical properties in Phyllostachys heterocycla cv. pubescens forest, south Sichuan Bamboo Sea[J]. Acta Ecol Sin, 2016, 36(8):2255-2263. 高强伟, 代斌, 罗承德, 等. 蜀南竹海毛竹林土壤物理性质空间异质性[J]. 生态学报, 2016, 36(8):2255-2263. doi:10.5846/stxb201410061961.
    [15] REN L N, LIU S R, CAI C J, et al. Decomposition characteristics of the fine root of Phyllostachys edulis and Dicranopteris pedata in southern Sichuan[J]. Acta Ecol Sin, 2018, 38(21):7638-7646. 任立宁, 刘世荣, 蔡春菊, 等. 川南地区毛竹和林下植被芒箕细根分解特征[J]. 生态学报, 2018, 38(21):7638-7646. doi:10.5846/stxb201801200158.
    [16] DORODNIKOV M, BLAGODATSKAYA E, BLAGODATSKY S, et al. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size[J]. Glob Change Biol, 2009, 15(6):1603-1614. doi:10.1111/j.1365-2486.2009.01844.x.
    [17] JING Y L, LIU S R, YIN Y, et al. Effects of N-fixing tree species (Alnus sibirica) on amino sugars in soil aggregates of Larix kaempferi plantation in eastern Liaoning Province, China[J]. Chin J Appl Ecol, 2018, 29(6):1753-1758. 井艳丽, 刘世荣, 殷有, 等. 引入固氮树种对辽东落叶松人工林土壤团聚体氨基糖的影响[J]. 应用生态学报, 2018, 29(6):1753-1758. doi:10.13287/j.1001-9332.201806.020.
    [18] GAO X M, LIU S R, WANG Y, et al. Effects of throughfall reduction and nitrogen addition on stoichiometry of leaf and fine root in Phyllostachys edulis forests[J]. Acta Ecol Sin, 2021, 41(4):1440-1450. 高小敏, 刘世荣, 王一, 等. 穿透雨减少和氮添加对毛竹叶片和细根化学计量学的影响[J]. 生态学报, 2021, 41(4):1440-1450. doi:10.5846/stxb202003260704.
    [19] LEI L, XIAO W F, ZENG L X, et al. Distribution of enzymatic activities within soil aggregates in two types of Pinus massoniana mixed plantations in the Three Gorges Reservoir area[J]. Acta Ecol Sin, 2020, 40(17):6179-6188. 雷蕾, 肖文发, 曾立雄, 等. 三峡库区2种马尾松混交林土壤团聚体酶活性分布特征[J]. 生态学报, 2020, 40(17):6179-6188. doi:10.5846/stxb201912252783.
    [20] CHENG M, ZHU Q L, LIU L, et al. Effects of vegetation on soil aggregate stability and organic carbon sequestration in the Ningxia Loess Hilly Region of northwest China[J]. Acta Ecol Sin, 2013, 33(9):2835-2844. 程曼, 朱秋莲, 刘雷, 等. 宁南山区植被恢复对土壤团聚体水稳定及有机碳粒径分布的影响[J]. 生态学报, 2013, 33(9):2835-2844. doi:10.5846/stxb201202090169.
    [21] CHENG M, XIANG Y, XUE Z J, et al. Soil aggregation and intraaggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China[J]. Catena, 2015, 124:77-84. doi:10.1016/j.catena.2014.09.006.
    [22] JASTROW J D, MILLER R M, LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biol Biochem, 1998, 30(7):905-916. doi:10.1016/S0038-0717(97)00207-1.
    [23] LENKA N K, CHOUDHURY P R, SUDHISHRI S, et al. Soil aggregation, carbon build up and root zone soil moisture in degraded sloping lands under selected agroforestry based rehabilitation systems in eastern India[J]. Agric Ecosys Environ, 2012, 150:54-62. doi:10.1016/j.agee.2012.01.003.
    [24] REN L N. Study on soil organic carbon and soil microbes in moso bamboo forests in Southern Sichuan[D]. Beijing:Chinese Academy of Forestry, 2018. 任立宁. 川南毛竹林土壤有机碳和土壤微生物研究[D]. 北京:中国林业科学研究院, 2018.
    [25] OADES J M. Soil organic matter and structural stability:Mechanisms and implications for management[J]. Plant Soil, 1984, 76(12/3):319-337. doi:10.1007/BF02205590.
    [26] ZHANG M K, HE Z L, CHEN G C, et al. Formation of water-stable aggregates in red soils as affected by land use[J]. Acta Pedol Sin, 1997, 34(4):359-366. 章明奎, 何振立, 陈国潮, 等. 利用方式对红壤水稳定性团聚体形成的影响[J]. 土壤学报, 1997, 34(4):359-366.
    [27] ELLIOTT E T, CAMBARDELLA C A. Physical separation of soil organic matter[J]. Agric Ecosys Environ, 1991, 34(1-4):407-419. doi:10.1016/0167-8809(91)90124-G.
    [28] REN L N, LIU S R, WANG Y, et al. Decomposition characteristics of litter of Phyllostachys edulis and Dicranopteris pedata[J]. For Res, 2018, 31(5):91-97. 任立宁, 刘世荣, 王一, 等. 毛竹和林下植被芒箕凋落物分解特征研究[J]. 林业科学研究, 2018, 31(5):91-97. doi:10.13275/j.cnki.lykxyj.2018.05.012.
    [29] CAMIRÉ C, CÔTÉ B, BRULOTTE S. Decomposition of roots of black alder and hybrid poplar in short-rotation plantings:Nitrogen and lignin control[J]. Plant Soil, 1991, 138(1):123-132. doi:10.1007/BF00011814.
    [30] MCCLAUGHERTY C A, ABER J D, MELILLO J M. Decomposition dynamics of fine roots in forested ecosystems[J]. Oikos, 1984, 42(3):378-386. doi:10.2307/3544408.
    [31] CUI N J. Effect of gap size on plant diversity and stoichiometric characteristics of dominant species in Pinus massoniana plantation[D]. Chengdu:Sichuan Agricultural University, 2014. 崔宁洁. 林窗大小对马尾松人工林林下植物多样性及优势种化学计量特征的影响[D]. 成都:四川农业大学, 2014.
    [32] ZHOU Y, ZHANG D J, SONG S M, et al. Forest gaps size on Pinus massoniana plantation of three natural regeneration herb N and P stoichiometry[J]. Bull Bot Res, 2017, 37(6):915-925. 周扬, 张丹桔, 宋思梦, 等. 林窗大小对马尾松林下3种更新草本植物N、P化学计量研究[J]. 植物研究, 2017, 37(6):915-925. doi:10.7525/j.issn.1673-5102.2017.06.015.
    [33] CHEN J Q, ZHANG L L, LI J, et al. Carbon, nitrogen and phosphorus stoichiometry of two fern species and their relationships to nutrient availability[J]. J Trop Subtrop Bot, 2014, 22(6):567-575. 陈嘉茜, 张玲玲, 李炯, 等. 蕨类植物碳氮磷化学计量特征及其与土壤养分的关系[J]. 热带亚热带植物学报, 2014, 22(6):567-575. doi:10.11926/j.issn.1005-3395.2014.06.004.
    [34] GÜSEWELL S. N:P ratios in terrestrial plants:Variation and functional significance[J]. New Phytol, 2004, 164(2):243-266. doi:10.1111/j.1469-8137.2004.01192.x.
    [35] WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecol Sin, 2008, 28(8):3937-3947. 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. doi:10.3321/j.issn:1000-0933.2008.08.054.
    [36] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry:Toward a unified view of cellular and ecosystem processes[J]. Bioscience, 1996, 46(9):674-684. doi:10.2307/1312897.
    [37] ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production:Metabolism, scaling and ecological response to global change[J]. New Phytol, 2010, 186(3):593-608. doi:10.1111/j.1469-8137.2010.03214.x.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王一,任立宁.两种芒箕覆盖度下毛竹林土壤团聚体的稳定性及生态化学计量特征比较研究[J].热带亚热带植物学报,2023,31(3):315~324

Copy
Share
Article Metrics
  • Abstract:180
  • PDF: 532
  • HTML: 580
  • Cited by: 0
History
  • Received:December 10,2021
  • Revised:March 17,2022
  • Online: May 24,2023
  • Published: May 20,2023
Article QR Code