Different Leaf Nutrient Use Strategies of Nitrogen-fixing and Non-nitrogen-fixing Leguminous Trees in South China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To reveal leaf nutrient use strategies of nitrogen-fixing leguminous trees (NLT) and non-nitrogen-fixing leguminous trees (n-NLT) under the nitrogen-rich environments in South China, five NLT (Pongamia pinnata, Acacia auriculiformis, Calliandra haematocephala, Ormosia pinnata, Acacia confuse) and three n-NLT (Sindora glabra, Saraca dives, Peltophorum tonkinense) were selected, the concentrations of carbon (C), nitrogen (N) and phosphorus (P) per leaf mass, leaf C: N and C: P, maximum net photosynthetic rate per leaf area (Aarea), photosynthetic nitrogen use efficiency (PNUE) and photosynthetic phosphorous use efficiency (PPUE) were measured. The results showed that N and P contents and Aarea of NLT were significantly higher than those of n-NLT, whereas their PNUE and PPUE had not significant difference. Although there was no significant difference in leaf C content between two types of species, leaf C: N and C: P of NLT were significantly lower than those of n-NLT. Therefore, these indicated that NLT in South China had stronger nutrient acquisition and photosynthetic capacity than N-NLT, but lower leaf nutrient utilization efficiency.

    Reference
    [1] LALIBERTÉ E, TURNER B L, COSTES T, et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot[J]. J Ecol, 2012, 100(3):631-642. doi:10.1111/j.1365-2745.2012.01962.x.
    [2] JIA Y L, YU G R, HE N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Sci Rep, 2014, 4:3763. doi:10.1038/srep03763.
    [3] LU X K, MO J M, ZHANG W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China:An overview[J]. J Trop Subtrop Bot, 2019, 27(5):500-522. 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500-522. doi:10.11926/jtsb.4113.
    [4] HUANG W J, LIU J X, WANG Y P, et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant Soil, 2013, 364(1/2):181-191. doi:10.1007/s11104-012-1355-8.
    [5] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:A meta-analysis[J]. Glob Chang Biol, 2016, 22(2):934-943. doi:10.1111/gcb.13125.
    [6] SACHS J L, QUIDES K W, WENDLANDT C E. Legumes versus rhizobia:A model for ongoing conflict in symbiosis[J]. New Phytol, 2018, 219(4):1199-1206. doi:10.1111/nph.15222.
    [7] ANDREWS M, ANDREWS M E. Specificity in legume-rhizobia symbioses[J]. Int J Mol Sci, 2017, 18(4):705. doi:10.3390/ijms18040705.
    [8] GAO D D, WANG X L, FU S L, et al. Legume plants enhance the resistance of soil to ecosystem disturbance[J]. Front Plant Sci, 2017, 8:1295. doi:10.3389/fpls.2017.01295.
    [9] GEI M G, ROZENDAAL D M A, POORTER L, et al. Legume abundance along successional and rainfall gradients in Neotropical forests[J]. Nat Ecol Evol, 2018, 2(7):1104-1111. doi:10.1038/s41559-018-0559-6.
    [10] MENGE D N L, CHAZDON R L. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests[J]. New Phytol, 2016, 209(3):965-977. doi:10.1111/nph.13734.
    [11] RAVEN J A. The evolution of autotrophy in relation to phosphorus requirement[J]. J Exp Bot, 2013, 64(13):4023-4046. doi:10.1093/jxb/ert306.
    [12] CAO J, YAN W D, XIANG W H, et al. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province[J]. Acta Ecol Sin, 2014, 34(22):6519-6527. 曹娟, 闫文德, 项文化, 等. 湖南会同不同年龄杉木人工林土壤磷素特征[J]. 生态学报, 2014, 34(22):6519-6527. doi:10.5846/stxb201404060655.
    [13] HANSEN A P, MARTIN P, BUTTERY B R, et al. Nitrate inhibition of N2 fixation in Phaseolus vulgar is L. cv. OAC Rico and a supernodulating mutant[J]. New Phytol, 1992, 122(4):611-615. doi:10.1111/j.1469-8137.1992.tb00088.x.
    [14] CHEN H, LI D J, GURMESA G A, et al. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China:A meta-analysis[J]. Environ Pollut, 2015, 206:352-360. doi:10.1016/j.envpol.2015.07.033.
    [15] XING K X, ZHAO M F, NIINEMETS Ü, et al. Relationships between leaf carbon and macronutrients across woody species and forest ecosystems highlight how carbon is allocated to leaf structural function[J]. Front Plant Sci, 2021, 12:674932. doi:10.3389/fpls.2021.674932.
    [16] OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaf trait relationships:Mass, area, and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744. doi:10.1126/science.1231574.
    [17] HIDAKA A, KITAYAMA K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients[J]. J Ecol, 2009, 97(5):984-991. doi:10.1111/j.1365-2745.2009.01540.x.
    [18] ZHANG J H, HE N P, LIU C C, et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments[J]. Glob Chang Biol, 2020, 26(4):2534-2543. doi:10.1111/gcb.14973.
    [19] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proc Natl Acad Sci USA, 2004, 101(30):11001-11006. doi:10.1073/pnas.0403588101.
    [20] YAN Z B, TIAN D, HAN W X, et al. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants[J]. Ann Bot, 2017, 120(6):937-942. doi:10.1093/aob/mcx106.
    [21] AZANI N, BABINEAU M, BAILEY C D, et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny:The Legume Phylogeny Working Group (LPWG)[J]. Taxon, 2017, 66(1):44-77. doi:10.12705/661.3.
    [22] ADAMS M A, BUCHMANN N, SPRENT J, et al. Crops, nitrogen, water:are legumes friend, foe, or misunderstood ally?[J]. Trends Plant Sci, 2018, 23(6):539-550. doi:10.1016/j.tplants.2018.02.009.
    [23] JENSEN E S, CARLSSON G, NIELSEN H H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N:A global-scale analysis[J]. Agron Sustain Dev, 2020, 40(1):5. doi:10.1007/s13593-020-0607-x.
    [24] TOGNETTI P M, PROBER S M, BÁEZ S, et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide[J]. Proc Natl Acad Sci USA, 2021, 118(28):e2023718118. doi:10.1073/pnas.2023718118.
    [25] TEDERSOO L, LAANISTO L, RAHIMLOU S, et al. Global database of plants with root-symbiotic nitrogen fixation:NodDB[J]. J Veg Sci, 2018, 29(3):560-568. doi:10.1111/jvs.12627.
    [26] ADAMS M A, TURNBULL T L, SPRENT J I, et al. Legumes are different:Leaf nitrogen, photosynthesis, and water use efficiency[J]. Proc Natl Acad Sci USA, 2016, 113(15):4098-4103. doi:10.1073/pnas.1523936113.
    [27] LAMBERT I, PERVENT M, LE QUERÉ A, et al. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling[J]. J Exp Bot, 2020, 71(16):5039-5052. doi:10.1093/jxb/eraa221.
    [28] TAYLOR B N, MENGE D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen[J]. Nat Plants, 2018, 4(9):655-661. doi:10.1038/s41477-018-0231-9.
    [29] WANG T, GUO J, PENG Y Q, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation[J]. Science, 2021, 374(6563):65-71. doi:10.1126/science.abh2890.
    [30] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001, 82(4):946-954. doi:10.1890/0012-9658(2001)082[0946:Eosnao]2.0.Co;2.
    [31] DUFF S M G, SARATH G, PLAXTON W C. The role of acid phosphatases in plant phosphorus metabolism[J]. Physiol Plant, 1994, 90(4):791-800. doi:10.1111/j.1399-3054.1994.tb02539.x.
    [32] HOULTON B Z, WANG Y P, VITOUSEK P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454(7202):327-330. doi:10.1038/nature07028.
    [33] HIKOSAKA K, TERASHIMA I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use[J]. Plant Cell Environ, 1995, 18(6):605-618. doi:10.1111/j.1365-3040.1995.tb00562.x.
    [34] EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1):9-19. doi:10.1007/BF00377192.
    [35] CROUS K Y, O'SULLIVAN O S, ZARAGOZA-CASTELLS J, et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study[J]. New Phytol, 2017, 215(3):992-1008. doi:10.1111/nph.14591.
    [36] KASCHUK G, KUYPER T W, LEFFELAAR P A, et al. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?[J]. Soil Biol Biochem, 2009, 41(6):1233-1244. doi:10.1016/j.soilbio.2009.03.005.
    [37] HIKOSAKA K. Interspecific difference in the photosynthesis-nitrogen relationship:Patterns, physiological causes, and ecological importance[J]. J Plant Res, 2004, 117(6):481-494. doi:10.1007/s10265-004-0174-2.
    [38] TANG J C, CHENG R M, SHI Z M, et al. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China[J]. PLoS One, 2018, 13(2):e0192040. doi:10.1371/journal.pone.0192040.
    [39] AERTS R. The advantages of being evergreen[J]. Trends Ecol Evol, 1995, 10(10):402-407. doi:10.1016/s0169-5347(00)89156-9.
    [40] PATRICK J W, BOTHA F C, BIRCH R G. Metabolic engineering of sugars and simple sugar derivatives in plants[J]. Plant Biotechnol J, 2013, 11(2):142-156. doi:10.1111/pbi.12002.
    [41] MORTIMER P E, PÉREZ-FERNÁNDEZ M A, VALENTINE A J. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris[J]. Soil Biol Biochem, 2008, 40(5):1019-1027. doi:10.1016/j.soilbio.2007.11.014.
    [42] KASCHUK G, LEFFELAAR P A, GILLER K E, et al. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi:A meta-analysis of potential photosynthate limitation of symbioses[J]. Soil Biol Biochem, 2010, 42(1):125-127. doi:10.1016/j.soilbio.2009.10.017.
    [43] FRIEL C A, FRIESEN M L. Legumes modulate allocation to rhizobial nitrogen fixation in response to factorial light and nitrogen manipulation[J]. Front Plant Sci, 2019, 10:1316. doi:10.3389/fpls.2019.01316.
    [44] SHENG J B, ZHANG F S, MAO D R. The ecological significance of mineral nutrition in plants:Ⅱ. The uptake, utilization and allocation of mineral nutrients by plants[J]. Eco-Agric Res, 1997, 5(2):11-14. 申建波, 张福锁, 毛达如. 植物矿质营养的生态意义Ⅱ. 植物对矿质养分的吸收、利用和分配[J]. 生态农业研究, 1997, 5(2):11-14.
    [45] WANG X, DING W L, LAMBERS H. Nodulation promotes cluster-root formation in Lupinus albus under low phosphorus conditions[J]. Plant Soil, 2019, 439(1/2):233-242. doi:10.1007/s11104-018-3638-1.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

叶楠,刘慧,罗琦,林忆雪,侯皓,叶清,赖闻玲.华南地区固氮与非固氮豆科树种叶片养分利用策略的对比研究[J].热带亚热带植物学报,2023,31(3):334~340

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 30,2021
  • Revised:March 01,2022
  • Online: May 24,2023
  • Published: May 20,2023
Article QR Code