Effects of Short-term Warming on Species Diversity of Understory Vegetation in Subtropical Evergreen Broad-leaved Forest
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [57]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In order to understand the impact of climate warming on species diversity of understory vegetation, the effects of short-term 4-year warming (4℃) on understory vegetation diversity in subtropical evergreen broad-leaved natural forest were studied by means of soil warming. The results showed that short-term warming had no significant effect on the species composition of understory vegetation (P>0.05). There were 77 common species in understory vegetation, belonging to 38 families and 59 genera, including 65 species 53 genera and 37 families in warming plot and 63 species 52 genera and 36 families in control plot. Short-term warming increased the coverage of trees by 22.61%, and decreased the coverage of herbs and shrubs by 4.97% and 21.75%, respectively, and warming reduced the height of herbs, shrubs and trees by 21.64%, 3.37% and 5.59%, respectively. The ranking of importance value of ferns in herbaceous plants decreased after warming, and the importance value of trees increased (P>0.05). Although there was no significant difference in species diversity indexes after warming (P>0.05), they all decreased with warming. Therefore, the species composition of understory vegetation was not sensitive to short-term warming, which decreased the importance value of ferns in herbaceous plants and negatively affected the species diversity indexes. However, this response was not sensitive, and it was predicted that long-term warming might lead to the succession of the whole community from herbaceous to shrub and tree.

    Reference
    [1] KAY J E. Early climate models successfully predicted global warming[J]. Nature, 2020, 578(7793):45-46. doi:10.1038/d41586-020-00243-w.
    [2] IPCC. Climate change 2021:The physical science basis[J]. Chem Int, 2021, 43(4):22-23. doi:10.1515/ci-2021-0407.
    [3] ZHU J T, ZHANG Y J, YANG X, et al. Warming alters plant phylo-genetic and functional community structure[J]. J Ecol, 2020, 108(6):2406-2415. doi:10.1111/1365-2745.13448.
    [4] WU T, QU C, LI Y Y, et al. Warming effects on leaf nutrients and plant growth in tropical forests[J]. Plant Ecol, 2019, 220(7/8):663-674. doi:10.1007/s11258-019-00943-y.
    [5] CHEN F, YU S L, SHANG H M, et al. The productivity of low-elevation juniper forests in central Asia increased under moderate warming scenarios[J]. J Geophys Res Biogeosci, 2021, 126(4):e2021JG006269. doi:10.1029/2021JG006269.
    [6] HE Y Z, HUANG W D, ZHAO X, et al. Review on the impact of climate change on plant diversity[J]. J Desert Res, 2021, 41(1):59-66.[何远政, 黄文达, 赵昕, 等. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠, 2021, 41(1):59-66. doi:10.7522/j.issn.1000-694X. 2020.00104.]
    [7] SEDDON A W R, MACIAS-FAURIA M, LONG P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature, 2016, 531(7593):229-232. doi:10.1038/nature16986.
    [8] KENNEDY D, NORMAN C. What don't we know?[J]. Science, 2005, 309(5731):75. doi:10.1126/science.309.5731.75.
    [9] LI T, XIONG Q L, LUO P, et al. Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant diversity of montane forests[J]. Ecol Evol, 2020, 10(1):557-568. doi:10.1002/ece3.5931.
    [10] KULONEN A. Faster, Taller, More-Patterns and Drivers of Floristic Change on European Mountain Summits[M]. Bergen:University of Bergen, 2017.
    [11] LI T, LUO P, XIONG Q L, et al. Spatial heterogeneity of tree diversity response to climate warming in montane forests[J]. Ecol Evol, 2021, 11(2):931-941. doi:10.1002/ece3.7106.
    [12] LENOIR J, GÉGOUT J C, MARQUET P A, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320(5884):1768-1771. doi:10.1126/science.1156831.
    [13] XU Y X, WANG Z C, ZHU W K, et al. Litterfall and nutrient cycling of Eucalyptus plantation with different ages on Leizhou Peninsula[J]. J Trop Subtrop Bot, 2019, 27(4):359-366.[许宇星, 王志超, 竹万宽, 等. 雷州半岛桉树人工林凋落物量和养分循环研究[J]. 热带亚热带植物学报, 2019, 27(4):359-366. doi:10.11926/jtsb.3986.]
    [14] LIAO Y J, HONG W, CHEN F Q, et al. Studies on species composition and diversity of Castanopsis hystrix-Acacia mangium mixed forest in Guangzhou[J]. J Trop Subtrop Bot, 2021, 29(5):494-502.[廖宇杰, 洪维, 陈富强, 等. 广州红锥-马占相思林物种组成与多样性研究[J]. 热带亚热带植物学报, 2021, 29(5):494-502. doi:10.11926/jtsb. 4361.]
    [15] LI X J, LIU X F, LIN C F, et al. Effects of experimental soil warming on plant biomass allocation during the early stages of succession in a subtropical forest in China[J]. Acta Ecol Sin, 2017, 37(1):25-34.[李晓杰, 刘小飞, 林成芳, 等. 土壤增温调节中亚热带森林更新初期植物生物量分配格局[J]. 生态学报, 2017, 37(1):25-34. doi:10. 5846/stxb201607261529.]
    [16] DUSENGE M E, WAY D A. Warming puts the squeeze on photo-synthesis:Lessons from tropical trees[J]. J Exp Bot, 2017, 68(9):2073-2077. doi:10.1093/jxb/erx114.
    [17] KRAUSE G H, CHEESMAN A W, WINTER K, et al. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime tempe-ratures[J]. J Plant Physiol, 2013, 170(9):822-827. doi:10.1016/j. jplph.2013.01.005.
    [18] Dong S Y, Gao X J. Long-term climate change:Interpretation of IPCC fifth assessment report[J]. Prog Inquisit Mutat Clim, 2014, 10(1):56-59.[董思言, 高学杰. 长期气候变化——IPCC第五次评估报告解读[J]. 气候变化研究进展, 2014, 10(1):56-59. doi:10.3969/j.issn. 1673-1719.2014.01.012.]
    [19] SOMMER J H, KREFT H, KIER G, et al. Projected impacts of climate change on regional capacities for global plant species richness[J]. Proc R Soc B, 2010, 277(1692):2271-2280. doi:10.1098/rspb.2010.0120
    [20] COTTO O, WESSELY J, GEORGES D, et al. A dynamic eco-evolu-tionary model predicts slow response of alpine plants to climate warming[J]. Nat Commun, 2017, 8:15399. doi:10.1038/ncomms 15399.
    [21] SU J Q, HAN X, CHEN B M. Do day and night warming exert different effects on growth and competitive interaction between invasive and native plants?[J]. Biol Invasions, 2021, 23(1):157-166. doi:10.1007/s10530-020-02362-x.
    [22] LI C. Effect of warming in different depth of soil carbon emissions on the natural forest of Castanopsis kawakamii[D]. Fuzhou:Fujian Normal University, 2018.[李超. 增温对格氏栲天然林不同深度土壤碳排放的影响[D]. 福州:福建师范大学, 2018.]
    [23] YUAN S. Effect of warming on quantity and composition of soil dissolved organic matter in subtropical forest[D]. Fuzhou:Fujian Normal University, 2018.[袁硕. 增温对亚热带常绿阔叶林土壤可溶性有机物数量与组成的影响[D]. 福州:福建师范大学, 2018.]
    [24] JIANG Z K, JI Y, LIU Y H, et al. Composition and diversity of understory vegetation of 50 years old Chinese fir plantation[J]. J Subtrop Resour Environ, 2020, 15(3):32-38.[蒋宗垲, 籍烨, 刘雨晖, 等. 老龄杉木人工林林下植被组成与多样性特征[J]. 亚热带资源与环境学报, 2020, 15(3):32-38. doi:10.19687/j.cnki.1673-7105. 2020.03.005.]
    [25] GE F. Modern Ecology[M]. Beijing:Science Press, 2008:1-643.[戈峰. 现代生态学[M]. 北京:科学出版社, 2008:1-643.]
    [26] CHAO Q, WEN J, YANG X Y, et al. Responses of subalpine meadow species diversity to simulated warming in the Yunding Mountain[J]. Environ Ecol, 2019, 1(4):34-40.[晁倩, 温静, 杨晓艳, 等. 云顶山亚高山草甸植物物种多样性对模拟增温的响应[J]. 环境生态学, 2019, 1(4):34-40.]
    [27] WHITTAKER R H. Evolution and measurement of species diversity[J]. Taxon, 1972, 21(2/3):213-251. doi:10.2307/1218190.
    [28] PIELOU E C. Ecological Diversity[M]. New York:Wiley, 1975:1-318.
    [29] SHI Z, SHERRY R, XU X, et al. Evidence for long-term shift in plant community composition under decadal experimental warming[J]. J Ecol, 2015, 103(5):1131-1140. doi:10.1111/1365-2745.12449.
    [30] YANG Z L, ZHANG Q, SU F L, et al. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species[J]. Glob Change Biol, 2017, 23(1):154-163. doi:10. 1111/gcb.13391.
    [31] MA Z Y, LIU H Y, MI Z R, et al. Climate warming reduces the temporal stability of plant community biomass production[J]. Nat Commun, 2017, 8:15378. doi:10.1038/ncomms15378.
    [32] WU Q, REN H Y, WANG Z W, et al. Additive negative effects of decadal warming and nitrogen addition on grassland community stability[J]. J Ecol, 2020, 108(4):1442-1452. doi:10.1111/1365-2745. 13363.
    [33] LO H S. Flora Reipublicae Popularis Sinicae, Tomus 71(1)[M]. Beijing:Science Press, 1999:1-442.[罗献瑞. 中国植物志, 第71卷第1分册[M]. 北京:科学出版社, 1999:1-432.]
    [34] LI X W. Flora Reipublicae Popularis Sinica, Tomus 31[M]. Beijing:Science Press, 1982:1-534.[李锡文. 中国植物志, 第31卷[M]. 北京:科学出版社, 1982:1-534.]
    [35] CHEN J. Flora Reipublicae Popularis Sinica, Tomus 58[M]. Beijing:Science Press, 1979:1-158.[陈介. 中国植物志, 第58卷[M]. 北京:科学出版社, 1979:1-158.]
    [36] YU X C, YAO B Q, ZHOU H K, et al. Variable responses to long-term simulated warming of underground biomass and carbon allocations of two alpine meadows on the Qinghai-Tibet Plateau[J]. Chin Sci Bull, 2015, 60(4):379-388.[余欣超, 姚步青, 周华坤, 等. 青藏高原两种高寒草甸地下生物量及其碳分配对长期增温的响应差异[J]. 科学通报, 2015, 60(4):379-388. doi:10.1360/n972014-00473.]
    [37] CAO X, SHEN Q, LIU L, et al. Relationships of growth, stable carbon isotope composition and anatomical properties of leaf and xylem in seven mulberry cultivars:A hint towards drought tolerance[J]. Plant Biol, 2020, 22(2):287-297. doi:10.1111/plb.13067.
    [38] FLETCHER L R, CUI H X, CALLAHAN H, et al. Evolution of leaf structure and drought tolerance in species of Californian ceanothus[J]. Am J Bot, 2018, 105(10):1672-1687. doi:10.1002/ajb2.1164.
    [39] YAO X, SONG Y, YANG J B, et al. Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae)[J]. J Syst Evol, 2021, 59(1):73-82. doi:10.1111/jse.12567.
    [40] LI N, WANG G X, YANG Y, et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau[J]. Acta Ecol Sin, 2011, 31(4):895-905.[李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响[J]. 生态学报, 2011, 31(4):895-905.]
    [41] QI H, LUO W, SUN Y J, et al. Responses of Leymus chinensis quantity characteristic to simulated warming and nitrogen application in Songnen Grassland[J]. J NE Norm Univ (Nat Sci), 2013, 45(2):112-117.[齐红, 罗微, 孙亚娟, 等. 松嫩草原羊草种群数量特征对增温和施氮的响应[J]. 东北师大学报(自然科学版), 2013, 45(2):112-117.]
    [42] WU H B, GAO Q Z, GANJURJAV H, et al. Effects of grazing and simulated warming on plant community structure and productivity of alpine grassland in northern Xizang, China[J]. Chin J Plant Ecol, 2019, 43(10):853-862.[吴红宝, 高清竹, 干珠扎布, 等. 放牧和模拟增温对藏北高寒草地植物群落特征及生产力的影响[J]. 植物生态学报, 2019, 43(10):853-862. doi:10.17521/cjpe.2018.0288.]
    [43] ZHAO Y Y, ZHOU H K, YAO B Q, et al. The influence of long-term simulating warming to the plant community and soil nutrient of alpine meadow[J]. Acta Agrest Sin, 2015, 23(4):665-671.[赵艳艳, 周华坤, 姚步青, 等. 长期增温对高寒草甸植物群落和土壤养分的影响[J]. 草地学报, 2015, 23(4):665-671. doi:10.11733/j.issn.1007-0435.2015. 04.001.]
    [44] LIU H Y, MI Z R, LIN L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proc Natl Acad Sci USA, 2018, 115(16):4051-4056. doi:10.1073/pnas. 1700299114.
    [45] YU C Q, HAN F S, FU G. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the northern Tibet alpine meadow at three elevations[J]. Sci Total Environ, 2019, 655:814-822. doi:10.1016/j.scitotenv.2018.11.309.
    [46] KLEIN J A, HARTE J, ZHAO X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Glob Change Biol, 2005, 11(9):1440-1451. doi:10.1111/j.1365-2486. 2005.00994.x.
    [47] GAO X M. Cloning and RNA in situ hybridization of calmodulin gene in Alpinia oblongifolia[J]. Acta Bot Boreali-Occid Sin, 2005, 25(9):1730-1734.[高雪梅. 华山姜中钙调素基因的克隆及其RNA原位杂交[J]. 西北植物学报, 2005, 25(9):1730-1734. doi:10.3321/j.issn:1000-4025.2005.09.004.]
    [48] ZHENG W Y, CAO K F. Impact of future climate change on potential geographical distribution of four Litsea species in China[J]. Guihaia, 2020, 40(11):1584-1594.[郑维艳, 曹坤芳. 未来气候变化对四种木姜子地理分布的影响[J]. 广西植物, 2020, 40(11):1584-1594. doi:10.11931/guihaia.gxzw201904020.]
    [49] XU M H, LIU M, XUE X, et al. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China[J]. J Arid Land, 2016, 8(5):773-786. doi:10.1007/s 40333-016-0013-z.
    [50] HOOVER D L, DUNIWAY M C, BELNAP J. Testing the apparent resistance of three dominant plants to chronic drought on the Colorado Plateau[J]. J Ecol, 2017, 105(1):152-162. doi:10.1111/1365-2745. 12647.
    [51] XIONG D C, LIU X F, CHEN S D, et al. Effects of soil warming on fine root morphology of Chinese fir seedlings[J]. J Subtrop Res Environ, 2014, 9(3):89-91.[熊德成, 刘小飞, 陈仕东, 等. 土壤增温对杉木幼苗细根形态特征的影响[J]. 亚热带资源与环境学报, 2014, 9(3):89-91. doi:10.3969/j.issn.1673-7105.2014.03.012.]
    [52] ZHU J T. Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow[J]. Chin J Plant Ecol, 2016, 40(10):1028-1036.[朱军涛. 实验增温对藏北高寒草甸植物繁殖物候的影响[J]. 植物生态学报, 2016, 40(10):1028-1036. doi:10. 17521/cjpe.2016.0068.]
    [53] LI P, SAYER E J, JIA Z, et al. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland[J]. Glob Change Biol, 2020, 26(5):3015-3027. doi:10.1111/gcb.15051.
    [54] MA L, ZHANG Q, ZHANG Z H, et al. Effects of gradient warming on species diversity and biomass in alpine meadows[J]. Acta Agrest Sin, 2020, 28(5):1395-1402.[马丽, 张骞, 张中华, 等. 梯度增温对高寒草甸物种多样性和生物量的影响[J]. 草地学报, 2020, 28(5):1395-1402.]
    [55] ZHANG C H, WILLIS C G, KLEIN J A, et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau[J]. Biol Conserv, 2017, 213:218-224. doi:10.1016/j.biocon.2017.07.019.
    [56] YANG Y W, LI X L, ZHOU X H, et al. Study on relationship between plant community degradation and soil environment in an alpine meadow[J]. Acta Agrest Sin, 2016, 24(6):1211-1217.[杨元武, 李希来, 周旭辉, 等. 高寒草甸植物群落退化与土壤环境特征的关系研究[J]. 草地学报, 2016, 24(6):1211-1217. doi:10.11733/j.issn.1007-0435.2016.06.009.]
    [57] KLEIN J A, HARTE J, ZHAO X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecol Lett, 2004, 7(12):1170-1179. doi:10.1111/j. 1461-0248.2004.00677.x.
    Related
    Cited by
Get Citation

籍烨,陈仕东,熊德成,胥超,刘小飞,何宗明,杨智杰.短期增温对亚热带常绿阔叶林林下植被物种多样性的影响[J].热带亚热带植物学报,2023,31(2):153~162

Copy
Share
Article Metrics
  • Abstract:250
  • PDF: 465
  • HTML: 537
  • Cited by: 0
History
  • Received:November 22,2021
  • Revised:March 11,2022
  • Online: March 31,2023
  • Published: March 20,2023
Article QR Code