Genome-wide Characterization, Expression Profiles and Alternative Splicing Events of YABBY Family Genes in Jatropha curcas
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [49]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to explore the YABBY transcription factor of Jatropha curcas, seven YABBY genes from five subfamilies were identified at the genome-wide level based on the newly published genome sequence of J. curcas. Members of the same subfamily had similar amino acid sequence, gene structure and conserved motifs. Two pairs of paralogs from YAB2 (JcYAB2A/JcYAB2B) and FIL/YAB3 (JcYAB1/JcYAB3) subfamily showed good collinearity, indicating that segmental duplication/whole genome duplication was the primary cause of YABBY gene family expansion. Purifying selection might be the main impetus during evolution, while candidates of YAB2 subgroup underwent more significant functional divergence. The expression patterns together with protein-protein interaction prediction suggested that JcYAB2B and JcYAB3 might play crucial roles in seed development, meanwhile the transcription of most JcYABs were remarkably repressed under exogenous cytokinin, drought or salinity stress. In addition, RNA sequencing and qRT-PCR analysis confirmed that the paralogous gene pair JcYAB2A/JcYAB2B exhibited differential cold-responsive transcription in leaves, and their newly identified transcripts were both dynamically accumulated during cold treatment. Therefore, it was speculated that JcYABs might participate in the regulation of low temperature response through functional competition or functional complementarity of spliceosome. These would help to understand the evolution of YABBY family, and elucidate how AS events play a crucial regulatory role in cold response of J. curcas.

    Reference
    [1] KANAYA E, NAKAJIMA N, OKADA K. Non-sequence-specific DNA binding by the FILAMENTOUS FLOWER protein from Arabidopsis thaliana is reduced by EDTA[J]. J Biol Chem, 2002, 277(14):11957-11964. doi:10.1074/jbc.M108889200.
    [2] BOWMAN J L, SMYTH D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains[J]. Development, 1999, 126(11):2387-2396. doi:10.1242/dev.126.11.2387.
    [3] ROMANOVA M A, MAKSIMOVA A I, PAWLOWSKI K, et al. YABBY genes in the development and evolution of land plants[J]. Int J Mol Sci, 2021, 22(8):4139. doi:10.3390/ijms22084139.
    [4] ZHANG T P, LI C Y, LI D X, et al. Roles of YABBY transcription factors in the modulation of morphogenesis, development, and phyto-hormone and stress responses in plants[J]. J Plant Res, 2020, 133(6):751-763. doi:10.1007/s10265-020-01227-7.
    [5] ECKARDT N A. YABBY genes and the development and origin of seed plant leaves[J]. Plant Cell, 2010, 22(7):2103. doi:10.1105/tpc.110. 220710.
    [6] GALLAGHER T L, GASSER C S. Independence and interaction of regions of the INNER NO OUTER protein in growth control during ovule development[J]. Plant Physiol, 2008, 147(1):306-315. doi:10. 1104/pp.107.114603.
    [7] CONG B, BARRERO L S, TANKSLEY S D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication[J]. Nat Genet, 2008, 40(6):800-804. doi:10.1038/ng.144.
    [8] BARTLEY G E, ISHIDA B K. Ethylene-sensitive and insensitive regu-lation of transcription factor expression during in vitro tomato sepal ripening[J]. J Exp Bot, 2007, 58(8):2043-2051. doi:10.1093/jxb/erm075.
    [9] NAGASAWA N, MIYOSHI M, SANO Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development, 2003, 130(4):705-718. doi:10.1242/dev.00294.
    [10] YAMAGUCHI T, NAGASAWA N, KAWASAKI S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J]. Plant Cell, 2004, 16(2):500-509. doi:10.1105/tpc.018044.
    [11] DAI M Q, ZHAO Y, MA Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant Physiol, 2007, 144(1):121-133. doi:10.1104/pp.107.096586.
    [12] LIN Z W, LI X R, SHANNON L M, et al. Parallel domestication of the Shattering1 genes in cereals[J]. Nat Genet, 2012, 44(6):720-724. doi:10.1038/ng.2281.
    [13] TANAKA W, TORIBA T, HIRANO H Y. Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice[J]. New Phytol, 2017, 215(2):825-839. doi:10.1111/nph.14617.
    [14] ZHAO X Y, XIE H T, CHEN X B, et al. Ectopic expression of TaYAB2, a member of YABBY gene family in wheat, causes partial abaxialization of adaxial epidermises of leaves in Arabidopsis[J]. Acta Agron Sin, 2012, 38(11):2042-2051.[赵翔宇, 谢洪涛, 陈祥彬, 等. 小麦TaYAB2基因的过量表达造成转基因拟南芥叶片近轴面特征趋向远轴面[J]. 作物学报, 2012, 38(11):2042-2051. doi:10.3724/SP.J. 1006.2012.02042.]
    [15] ZHAO W, SU H Y, SONG J, et al. Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxia-lization of the adaxial epidermises of leaves and arrests the develop-ment of shoot apical meristem in Arabidopsis[J]. Plant Sci, 2006, 170(2):364-371. doi:10.1016/j.plantsci.2005.09.008.
    [16] STRABLE J, VOLLBRECHT E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy[J]. Development, 2019, 146(6):dev171181. doi:10.1242/dev.171181.
    [17] YANG Z E, GONG Q, WANG L L, et al. Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses[J]. Front Genet, 2018, 9:33. doi:10.3389/fgene.2018.00033.
    [18] ZHAO S P, LU D, YU T F, et al. Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 invol-vement in high salt and drought stresses[J]. Plant Physiol Biochem, 2017, 119:132-146. doi:10.1016/j.plaphy.2017.08.026.
    [19] SUN M H, LI H, LI Y B, et al. Tomato YABBY2b controls plant height through regulating indole-3-acetic acid-amido synthetase (GH3.8) expression[J]. Plant Sci, 2020, 297:110530. doi:10.1016/j.plantsci. 2020.110530.
    [20] ZHANG S L, WANG L, SUN X M, et al. Genome-wide analysis of the YABBY gene family in Grapevine and functional characterization of VvYABBY4[J]. Front Plant Sci, 2019, 10:1207. doi:10.3389/fpls.2019. 01207.
    [21] REDDY A S N, MARQUEZ Y, KALYNA M, et al. Complexity of the alternative splicing landscape in plants[J]. Plant Cell, 2013, 25(10):3657-3683. doi:10.1105/tpc.113.117523.
    [22] LALOUM T, MARTÍN G, DUQUE P. Alternative splicing control of abiotic stress responses[J]. Trends Plant Sci, 2018, 23(2):140-150. doi:10.1016/j.tplants.2017.09.019.
    [23] KAVITHA K R, BEEMKUMAR N, RAJASEKAR R. Experimental investigation of diesel engine performance fuelled with the blends of Jatropha curcas, ethanol, and diesel[J]. Environ Sci Pollut Res Int, 2019, 26(9):8633-8639. doi:10.1007/s11356-019-04288-x.
    [24] CONTRAN N, CHESSA L, LUBINO M, et al. State-of-the-art of the Jatropha curcas productive chain:From sowing to biodiesel and by-products[J]. Ind Crops Prod, 2013, 42:202-215. doi:10.1016/j.ind crop.2012.05.037.
    [25] JALALI S, KANCHARLA N, YEPURI V, et al. Exploitation of Hi-C sequencing for improvement of genome assembly and in-vitro vali-dation of differentially expressing genes in Jatropha curcas L.[J]. 3 Biotech, 2020, 10(3):91. doi:10.1007/s13205-020-2082-0.
    [26] ZHANG X, PAN B Z, CHEN M S, et al. JCDB:A comprehensive knowledge base for Jatropha curcas, an emerging model for woody energy plants[J]. BMC Genomics, 2019, 20(S9):958. doi:10.1186/s 12864-019-6356-z.
    [27] WU P Z, ZHOU C P, CHENG S F, et al. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant[J]. Plant J, 2015, 81(5):810-821. doi:10.1111/tpj.12761.
    [28] CHEN C J, CHEN H, ZHANG Y, et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202. doi:10.1016/j.molp.2020.06.009.
    [29] HURST L D. The Ka/Ks ratio:Diagnosing the form of sequence evolution[J]. Trends Genet, 2002, 18(9):486-487. doi:10.1016/S 0168-9525(02)02722-1.
    [30] XU W J, ZHAO Y Y, CHEN S S, et al. Evolution and functional divergence of the fructokinase gene family in Populus[J]. Front Plant Sci, 2020, 11:484. doi:10.3389/fpls.2020.00484.
    [31] WANG S S, ZHAO H C, DENG F F, et al. Isolation and functional characterization of a new ERF transcription factor JcERF3 from Jatropha curcas[J]. Plant Physiol Commun, 2017, 53(8):1399-1408.[王莎莎, 赵洪春, 邓凤飞, 等. 小桐子中一个新的ERF家族转录因子JcERF3基因的克隆及功能分析[J]. 植物生理学报, 2017, 53(8):1399-1408. doi:10.13592/j.cnki.ppj.2017.1030.]
    [32] SHEN S H, PARK J W, LU Z X, et al. rMATS:Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proc Natl Acad Sci USA, 2014, 111(51):E5593-E5601. doi:10.1073/pnas.1419161111.
    [33] SIEGFRIED K R, ESHED Y, BAUM S F, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis[J]. Development, 1999, 126(18):4117-4128. doi:10.1242/dev.126.18.4117.
    [34] CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biol, 2004, 4:10. doi:10.1186/1471-2229-4-10.
    [35] LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494):1151-1155. doi:10.1126/science.290.5494.1151.
    [36] TORIBA T, HARADA K, TAKAMURA A, et al. Molecular charac-terization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1[J]. Mol Genet Genom, 2007, 277(5):457-468. doi:10.1007/s00438-006-0202-0.
    [37] PAN B Z, XU Z F. Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas[J]. J Plant Growth Regul, 2011, 30(2):166-174. doi:10.1007/s00344-010-9179-3.
    [38] PAN B Z, CHEN M S, NI J, et al. Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin[J]. BMC Genom, 2014, 15(1):974. doi:10.1186/1471-2164-15-974.
    [39] JIANG H W, WU P Z, ZHANG S, et al. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds[J]. PLoS One, 2012, 7(5):e36522. doi:10.1371/journal.pone.0036522.
    [40] KELLEY D R, SKINNER D J, GASSER C S. Roles of polarity deter-minants in ovule development[J]. Plant J, 2009, 57(6):1054-1064. doi:10.1111/j.1365-313X.2008.03752.x.
    [41] MANUELA D, XU M L. Patterning a leaf by establishing polarities[J]. Front Plant Sci, 2020, 11:568730. doi:10.3389/fpls.2020.568730.
    [42] ESHED Y, IZHAKI A, BAUM S F, et al. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities[J]. Development, 2004, 131(12):2997-3006. doi:10.1242/dev.01186.
    [43] STAHLE M I, KUEHLICH J, STARON L, et al. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis[J]. Plant Cell, 2009, 21(10):3105-3118. doi:10.1105/tpc.109.070458.
    [44] CONNER J, LIU Z C. LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development[J]. Proc Natl Acad Sci USA, 2000, 97(23):12902-12907. doi:10.1073/pnas.230352397.
    [45] PENG X J, WU Q Q, TENG L H, et al. Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors[J]. BMC Plant Biol, 2015, 15:108. doi:10.1186/s12870-015-0489-2.
    [46] LI Z Y, LI G, CAI M X, et al. Genome-wide analysis of the YABBY transcription factor family in pineapple and functional identification of AcYABBY4 involvement in salt stress[J]. Int J Mol Sci, 2019, 20(23):5863. doi:10.3390/ijms20235863.
    [47] MARQUEZ Y, BROWN J W S, SIMPSON C, et al. Transcriptome survey reveals increased complexity of the alternative splicing land-scape in Arabidopsis[J]. Genome Res, 2012, 22(6):1184-1195. doi:10.1101/gr.134106.111.
    [48] LI Y Y, MI X Z, ZHAO S Q, et al. Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant[J]. BMC Genom, 2020, 21(1):65. doi:10.1186/s12864-020-6491-6.
    [49] KALYNA M, SIMPSON C G, SYED N H, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regu-latory genes in Arabidopsis[J]. Nucl Acids Res, 2012, 40(6):2454-2469. doi:10.1093/nar/gkr932.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张作胜,龚明,吴丹丹,杨宇,刘丽宵,王莎莎.小桐子YABBY全基因组家族成员的鉴定、表达和可变剪接分析[J].热带亚热带植物学报,2023,31(2):249~262

Copy
Share
Article Metrics
  • Abstract:177
  • PDF: 386
  • HTML: 506
  • Cited by: 0
History
  • Received:November 17,2021
  • Revised:March 11,2022
  • Online: March 31,2023
  • Published: March 20,2023
Article QR Code