Genetic Identification of the Natural Hybrid Progenies of ‘Jinmudan’ Tea Varieties
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to analyze the genetic identification of the natural hybrid progenies of tea, EST-SSR capillary electrophoresis fluorescence maker technique was used to analyze 65 the natural hybrid progenies of ‘Jinmudan’ tea. The results showed that a total of 192 polymorphic alleles were detected by 28 SSR markers, the average number of alleles (Na), observed heterozygosity (Ho) and polymorphism information content (PIC) was 0.58, 0.58 and 0.98, respectively. When the parental genotype was known, the combined exclusion probability was all reached 0.999, indicating that the 28 selected SSR marker sites had high polymorphism and high probability of exclusion, which were suitable for genetic analysis and paternity identification of individuals. The results of genetic identification showed that the 15 natural hybrid progenies of ‘Jinmudan’ tea could be divided into 4 types, JMD44, JMD45, JMD47 and JMD32 were early green tea, JMD51 and JMD53 were ‘Rougui’ oolong tea in northern Fujian, MD2 and JMD56 were ‘Tieguanyin’ oolong tea in southern Fujian, JMD24, JMD26, JMD29, JMD55, JMD59 and JMD27 were ‘Huangdan’ oolong tea.

    Reference
    [1] YU F L. Discussion on the originating place and the originating center of tea plant[J]. J Tea Sci, 1986, 6(1):1-8.[虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1):1-8. doi:10.13305/j.cnki.jts. 1986.01.001.]
    [2] QIAN Y H, PANG D D, WEI K, et al. Research progress on fertility of tea plant (Camellia sinensis)[J]. Tea Commun, 2020, 47(2):185-191.[钱因红, 庞丹丹, 韦康, 等. 茶树育性相关的研究进展[J]. 茶叶通讯, 2020, 47(2):185-191. doi:10.3969/j.issn.1009-525X.2020.02.002.]
    [3] WANG S L, MA C L, HUANG D J, et al. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers[J]. J Tea Sci, 2018, 38(1):58-68.[王松琳, 马春雷, 黄丹娟, 等. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J]. 茶叶科学, 2018, 38(1):58-68. doi:10.3969/j.issn.1000-369X.2018.01.006.]
    [4] JIANG X H, FANG K X, CHEN D, et al. Genetic diversity and relationship of two historical famous Camellia sinensis groups in Guangdong by capillary electrophoresis detection with fluorescent EST-SSR marker[J]. Chin J Trop Crops, 2018, 39(1):46-54.[姜晓辉, 方开星, 陈栋, 等. 基于EST-SSR毛细管电泳荧光标记技术分析广东2个历史名茶群体遗传多样性[J]. 热带作物学报, 2018, 39(1):46-54.]
    [5] MAO J, JIANG H J, LI C X, et al. Genetic diversity analysis of tea plant in Baiyingshan Mountain of Yunnan[J]. J Tea Sci, 2018, 38(1):69-77.[毛娟, 江鸿键, 李崇兴, 等. 云南白莺山地区茶树遗传多样性研究[J]. 茶叶科学, 2018, 38(1):69-77. doi:10.3969/j.issn.1000-369X.2018.01.007.]
    [6] JIANG X H, LI H J, LI C X, et al. Genetic diversity and population structure of tea germplasm from Baiying Mountain in Yunnan[J]. Chin Agric Sci Bull, 2019, 35(14):68-76.[姜晓辉, 李红建, 李崇兴, 等. 云南白莺山茶树种质资源遗传多样性及群体结构分析[J]. 中国农学通报, 2019, 35(14):68-76.]
    [7] ZHOU B, WANG L B, XU X T, et al. Analysis of genetic diversity and genetic relationship of Leibo wild tea resources[J]. J Yunnan Agric Univ (Nat Sci), 2020, 35(1):122-129.[周斌, 王留彬, 徐新涛, 等. 雷波野生茶树遗传多样性及亲缘关系分析[J]. 云南农业大学学报(自然科学), 2020, 35(1):122-129. doi:10.12101/j.issn.1004-390X(n). 201904037.]
    [8] ZHANG H Y, YANG T, LIU R, et al. Assessment of genetic diversity by using EST-SSR markers in Lupinus[J]. Acta Agron Sin, 2020, 46(3):330-340.[张红岩, 杨涛, 刘荣, 等. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3):330-340. doi:10.3724/SP.J.1006.2020.94077.]
    [9] LI B, PAN W T, LI K Q, et al. A comparison among three softwares of parentage analysis (CERVUS, COLONY and PAPA):A case study on parentage analysis of control pollination progenies in Liriodendron[J]. Mol Plant Breed, 2013, 11(2):241-248.[李博, 潘文婷, 李康琴, 等. 三种常用亲本分析软件效率的比较——以鹅掌楸属树种控制授粉子代亲本分析为例[J]. 分子植物育种, 2013, 11(2):241-248.]
    [10] AI C, XU L A, LAI H L, et al. Genetic diversity and paternity analysis of a seed orchard in Pinus massoniana[J]. Sci Silv Sin, 2006, 42(11):146-150.[艾畅, 徐立安, 赖焕林, 等. 马尾松种子园的遗传多样性与父本分析[J]. 林业科学, 2006, 42(11):146-150. doi:10.3321/j. issn:1001-7488.2006.11.026.]
    [11] ZHANG D M, SUN P G, SHEN X H, et al. Paternity analysis of open-and control-pollinated seeds collected from a seed orchard of Pinus tabulaeformis[J]. Chin J Plant Ecol, 2009, 33(2):302-310.[张冬梅, 孙佩光, 沈熙环, 等. 油松种子园自由授粉与控制授粉种子父本分析[J]. 植物生态学报, 2009, 33(2):302-310. doi:10.3773/j.issn. 1005-264x.2009.02.007.]
    [12] FENG Y H, LI H G, YANG Z Q, et al. Construction of second generation breeding population of Pinus massoniana in Guangxi[J]. Sci Silv Sin, 2017, 53(1):54-61.[冯源恒, 李火根, 杨章旗, 等. 广西马尾松第2代育种群体的组建[J]. 林业科学, 2017, 53(1):54-61. doi:10.11707/j.1001-7488.20170107.]
    [13] WANG J Z, LAN J, LU Z X, et al. Study on using SSR markers for paternal identification in eucalyptus[J]. Eucalypt Sci Technol, 2019, 36(2):1-8.[王建忠, 兰俊, 陆珍先, 等. 基于SSR分子标记的桉树父本鉴定技术研究[J]. 桉树科技, 2019, 36(2):1-8. doi:10.3969/j. issn.1674-3172.2019.02.001.]
    [14] SHAO W H, WANG Z S, ZHANG J G. Paternity analysis of main olive cultivars progenies based on SSR markers[J]. For Res, 2020, 33(3):22-30.[邵文豪, 王兆山, 张建国. 基于SSR标记的油橄榄主要栽培品种子代父本分析[J]. 林业科学研究, 2020, 33(3):22-30. doi:10. 13275/j.cnki.lykxyj.2020.03.003.]
    [15] HE Y F, ZHU Y J, WU X B, et al. Parentage analysis of coreius guichenoti using microsatellites[J]. Acta Hydrobiol Sin, 2019, 43(6):1216-1223.[何勇凤, 朱永久, 吴兴兵, 等. 基于微卫星标记的圆口铜鱼亲子鉴定技术[J]. 水生生物学报, 2019, 43(6):1216-1223. doi:10.7541/2019.144.]
    [16] YU S P, XU L Y, WU R M, et al. Genetic and phylogenetic analysis for resources of Camellia sinensis from Kaihua County in Zhejiang Province[J]. J Tea Sci, 2020, 40(3):341-351.[余书平, 徐礼羿, 吴荣梅, 等. 浙江开化县茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2020, 40(3):341-351. doi:10.3969/j.issn.1000-369X. 2020.03.005.]
    [17] ZHU K C, SONG L, LIU B S, et al. Establishment of parentage determination in yellowfin seabream (Acanthopagrus latus)[J]. J Fish China, 2020, 44(3):351-357.[朱克诚, 宋岭, 刘宝锁, 等. 黄鳍棘鲷家系亲缘关系鉴定[J]. 水产学报, 2020, 44(3):351-357. doi:10. 11964/jfc.20181011480.]
    [18] FENG X T, ZHANG G N, XUE X P, et al. Current germplasm situation of bighead carp (Aristichthys nobilis) candidate parent and parent from hatchery in the lower reaches of Changjiang River based on SSR markers[J]. J Fish Sci China, 2020, 27(5):589-597.[冯晓婷, 张桂宁, 薛向平, 等. 基于SSR标记的长江下游原良种场鳙亲本和后备亲本种质资源现状分析[J]. 中国水产科学, 2020, 27(5):589-597. doi:10.3724/SP.J.1118.2020.19266.]
    [19] LI B, REN T T, QIU M Y, et al. Paternity identification of Texel×Kazakh sheep based on microsatellite multiple PCR technology[J]. China Anim Husb Vet Med, 2020, 47(7):2171-2180.[李彬, 任亭亭, 邱梅玉, 等. 基于微卫星多重PCR技术的特克塞尔×哈萨克杂交羊亲子鉴定[J]. 中国畜牧兽医, 2020, 47(7):2171-2180. doi:10. 16431/j.cnki.1671-7236.2020.07.022.]
    [20] WEN P, ZHAO J, LI W, et al. The parentage assignment of Mauremys mutica using multiplex PCR of microsatellites[J]. Acta Hydrobiol Sin, 2015, 39(6):1134-1141.[文萍, 赵建, 李伟, 等. 基于微卫星多重PCR技术的黄喉拟水龟亲子鉴定[J]. 水生生物学报, 2015, 39(6):1134-1141. doi:10.7541/2015.149.]
    [21] HAN H Z, LIU Y, WANG T T, et al. Development of multiplex PCR systems of microsatellite and evaluation of parental contribution to offsprings in black rockfish (Sebastes schlegelii)[J]. Chin Fish Qual Stand, 2018, 8(4):48-57.[韩慧宗, 刘阳, 王腾腾, 等. 许氏平鲉微卫星多重PCR体系构建及亲本对子代贡献率[J]. 中国渔业质量与标准, 2018, 8(4):48-57. doi:10.3969/j.issn.2095-1833.2018.04.006.]
    [22] QUE Y F, XU X, XU N, et al. Parentage analysis of Hemibarbus labeo based on microsatellite markers[J]. J Dalian Ocean Univ, 2019, 34(5):643-648.[阙延福, 胥贤, 徐念, 等. 基于微卫星标记的唇䱻亲子鉴定技术研究[J]. 大连海洋大学学报, 2019, 34(5):643-648. doi:10. 16535/j.cnki.dlhyxb.2018-258.]
    [23] YANG Y J, LIANG Y R. Clonal Tea Varieties of China[M]. Shanghai:Shanghai Science and Technology Press, 2014:111.[杨亚军, 梁月荣. 中国无性系茶树品种志[M]. 上海:上海科学技术出版社, 2014:111.]
    [24] JIN J Q, CUI H R, GONG X C, et al. Studies on tea plants (Camellia sinensis) germplasms using EST-SSR marker[J]. Hereditas, 2007, 29(1):103-108.[金基强, 崔海瑞, 龚晓春, 等. 用EST-SSR标记对茶树种质资源的研究[J]. 遗传, 2007, 29(1):103-108. doi:10.3321/j. issn:0253-9772.2007.01.019.]
    [25] MA J Q, YAO M Z, MA C L, et al. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis)[J]. PLoS One, 2014, 9(3):e93131. doi:10. 1371/journal.pone.0093131.
    [26] KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007, 16(5):1099-1106. doi:10.1111/j.1365-294X.2007.03089.x.
    [27] GENG R J, XIE M H, WANG W M, et al. Microsatellite paternity of Megalobrama amblycephala[J]. Freshwater Fish, 2018, 48(4):9-15.[耿瑞静, 谢明辉, 王卫民, 等. 团头鲂的微卫星亲子鉴定[J]. 淡水渔业, 2018, 48(4):9-15. doi:10.3969/j.issn.1000-6907.2018.04.002.]
    [28] ZHU Z L, LIU Z S, GAO H, et al. Parentage verification and mating system of Pseudois nayaur in Helan Mountains based on Faecal DNA[J]. Acta Ecol Sin, 2019, 39(22):8639-8647.[祝招玲, 刘振生, 高惠, 等. 基于粪便DNA的贺兰山岩羊亲权鉴定和婚配制研究[J]. 生态学报, 2019, 39(22):8639-8647. doi:10.5846/stxb201806261410.]
    [29] GU Y, LI C, LU C Y, et al. Microsatellite markers for parentage identification in Jian carp (Cyprinus carpio var. jian)[J]. Hereditas, 2012, 34(11):1447-1455.[顾颖, 李超, 鲁翠云, 等. 建鲤(Cyprinus carpio var. jian)微卫星DNA亲权鉴定[J]. 遗传, 2012, 34(11):1447-1455. doi:10.3724/SP.J.1005.2012.01447.]
    [30] WANG M, ZHANG X H, CUI R, et al. Parentage testing of Dezhou donkey with microsatellite marker[J]. China Anim Husb Vet Med, 2019, 46(7):2003-2011.[王敏, 张新浩, 崔冉, 等. 利用微卫星标记鉴定德州驴亲子关系[J]. 中国畜牧兽医, 2019, 46(7):2003-2011. doi:10.16431/j.cnki.1671-7236.2019.07.015.]
    [31] HE T H, GE S. Mating system, paternity analysis and gene flow in plant populations[J]. Acta Phytoecol Sin, 2001, 25(2):144-154.[何田华, 葛颂. 植物种群交配系统、亲本分析以及基因流动研究[J]. 植物生态学报, 2001, 25(2):144-154.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨军,孔祥瑞,郑国华,邱陈华,王让剑.茶树品种‘金牡丹’自然杂交后代遗传鉴定[J].热带亚热带植物学报,2023,31(1):69~80

Copy
Share
Article Metrics
  • Abstract:163
  • PDF: 535
  • HTML: 819
  • Cited by: 0
History
  • Received:November 02,2021
  • Revised:February 07,2022
  • Online: February 24,2023
  • Published: January 20,2023
Article QR Code