Coordination between Leaf Construction Cost and Mechanical Resistance of Dominant Woody Species in Subtropical Forests at Different Successional Stages
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to reveal the leaf energy investment strategy of subtropical forest trees at different successional stages and the correlations between leaf construction cost and mechanical resistance, the suits of leaf traits, including force to tear (Ft), force to punch (Fp), leaf mass per area (LMA), leaf lifespan (LLS), leaf construction cost per area (CCarea), leaf cuticle thickness (Tc), and leaf maximum photosynthesis per area (Aarea), for 14 dominant woody species from subtropical forests at different successional stages were measured, and the correlations between leaf construction cost and mechanical resistance were analyzed. The results showed that the dominant species from late successional forest had higher CCarea, Ft and Fp, but lower Aarea than those in early successional forest. In addition, CCarea was positively correlated with both Ft and Fp. Moreover, the structural traits, such as Tc and LMA, were positively correlated with CCarea and mechanical resistance. Therefore, it was illustrated the coordination between CCarea and mechanical resistance, along with the changes in structural traits might be responsible (at least partially) for this shift of leaf energy investment strategy for trees occurred at different successional subtropical forests.

    Reference
    [1] WILLIAMS K, PERCIVAL F, MERINO J, et al. Estimation of tissue construction cost from heat of combustion and organic nitrogen content[J]. Plant Cell Environ, 1987, 10(9):725-734. doi:10.1111/1365-3040. ep11604754.
    [2] CAPLAN J S, WHEATON C N, MOZDZER T J. Belowground advan-tages in construction cost facilitate a cryptic plant invasion[J]. Aob Plants, 2014, 6:plu020. doi:10.1093/aobpla/plu020.
    [3] POORTER H, PEPIN S, RIJKERS T, et al. Construction costs, chemical composition and payback time of high-and low-irradiance leaves[J]. J Exp Bot, 2006, 57(2):355-371. doi:10.1093/jxb/erj002.
    [4] COSTE S, ROGGY J C, SCHIMANN H, et al. A cost-benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings:Leaf life span and payback time for leaf deployment[J]. J Exp Bot, 2011, 62(11):3941-3955. doi:10.1093/jxb/err092.
    [5] ZHU S D, CHEN Y J, CAO K F, et al. Interspecific variation in branch and leaf traits among three Syzygium tree species from different succe-ssional tropical forests[J]. Funct Plant Biol, 2015, 42(4):423-432. doi:10.1071/fp14201.
    [6] NAVAS M L, DUCOUT B, ROUMET C, et al. Leaf life span, dynamics and construction cost of species from Mediterranean old-fields differing in successional status[J]. New Phytol, 2003, 159(1):213-228. doi:10.1046/j.1469-8137.2003.00790.x.
    [7] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photo-synthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant Cell Environ, 2013, 36(4):879-891. doi:10.1111/pce.12024.
    [8] XIAO Y H, LIU S R, TONG F C, et al. Dominant species in subtropical forests could decrease photosynthetic N allocation to carboxylation and bioenergetics and enhance leaf construction costs during forest succession[J]. Front Plant Sci, 2018, 9:117. doi:10.3389/fpls.2018.00117.
    [9] OSUNKOYA O O, BAYLISS D, PANETTA F D, et al. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species[J]. Ann Bot, 2010, 106(2):371-380. doi:10.1093/aob/mcq119.
    [10] FENG Y L, LI Y P, WANG R F, et al. A quicker return energy-use strategy by populations of a subtropical invader in the non-native range:A potential mechanism for the evolution of increased competitive ability[J]. J Ecol, 2011, 99(5):1116-1123. doi:10.1111/j.1365-2745. 2011.01843.x.
    [11] HEBERLING J M, FRIDLEY J D. Resource-use strategies of native and invasive plants in eastern north American forests[J]. New Phytol, 2013, 200(2):523-533. doi:10.1111/nph.12388.
    [12] PONS T L, POORTER H. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance[J]. Front Plant Sci, 2014, 5:12. doi:10.3389/fpls.2014.00012.
    [13] ZHU S D, LI R H, SONG J, et al. Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests[J]. Ann Bot, 2016, 117(3):497-506. doi:10.1093/aob/mcv179.
    [14] SUÁREZ N. Leaf construction cost in Avicennia germinans as affected by salinity under field conditions[J]. Biol Plantarum, 2005, 49(1):111-116. doi:10.1007/s10535-005-1116-0.
    [15] ZHU S D, CAO K F. Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China[J]. Oecologia, 2010, 163(3):591-599. doi:10.1007/s00442-010-1579-3.
    [16] BARROS V, MELO A, SANTOS M, et al. Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery[J]. Plant Physiol Biochem, 2020, 147:181-190. doi:10.1016/j.plaphy.2019.12.018.
    [17] ENRICO L, DÍAZ S, WESTOBY M, et al. Leaf mechanical resistance in plant trait databases:Comparing the results of two common measu-rement methods[J]. Ann Bot, 2016, 117(1):209-214. doi:10.1093/aob/mcv149.
    [18] WESTBROOK J W, KITAJIMA K, BURLEIGH J G, et al. What makes a leaf tough?Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest[J]. Am Nat, 2011, 177(6):800-811. doi:10. 1086/659963.
    [19] ONODA Y, WESTOBY M, ADLER P B, et al. Global patterns of leaf mechanical properties[J]. Ecol Lett, 2011, 14(3):301-312. doi:10. 1111/j.1461-0248.2010.01582.x.
    [20] KITAJIMA K, LLORENS A M, STEFANESCU C, et al. How cellulose-based leaf toughness and lamina density contribute to long leaf life-spans of shade-tolerant species[J]. New Phytol, 2012, 195(3):640-652. doi:10.1111/j.1469-8137.2012.04203.x.
    [21] MÉNDEZ-ALONZO R, EWERS F W, JACOBSEN A L, et al. Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs[J]. Trees, 2019, 33(2):507-519. doi:10.1007/s00468-018-1796-7.
    [22] ONODA Y, RICHARDS L, WESTOBY M. The importance of leaf cuticle for carbon economy and mechanical strength[J]. New Phytol, 2012, 196(2):441-447. doi:10.1111/j.1469-8137.2012.04263.x.
    [23] BLUMENTHAL D M, MUELLER K E, KRAY J A, et al. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands:The central roles of phenology and leaf dry matter con-tent[J]. J Ecol, 2020, 108(6):2336-2351. doi:10.1111/1365-2745.13454.
    [24] CHOONG M F, LUCAS P W, ONG J S Y, et al. Leaf fracture toughness and sclerophylly:Their correlations and ecological impli-cations[J]. New Phytol, 1992, 121(4):597-610. doi:10.1111/j.1469-8137.1992.tb01131.x.
    [25] ALVAREZ-CLARE S, KITAJIMA K. Physical defence traits enhance seedling survival of neotropical tree species[J]. Funct Ecol, 2007, 21(6):1044-1054. doi:10.1111/j.1365-2435.2007.01320.x.
    [26] HE P C, WRIGHT I J, ZHU S D, et al. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements[J]. New Phytol, 2019, 223(2):607-618. doi:10.1111/nph.15803.
    [27] ONODA Y, HIKOSAKA K, HIROSE T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency[J]. Funct Ecol, 2004, 18(3):419-425. doi:10.1111/j.0269-8463.2004.00847.x.
    [28] ONODA Y, WRIGHT I J, EVANS J R, et al. Physiological and struc-tural tradeoffs underlying the leaf economics spectrum[J]. New Phytol, 2017, 214(4):1447-1463. doi:10.1111/nph.14496.
    [29] BAZZAZ F A, PICKETT S T A. Physiological ecology of tropical succession:A comparative review[J]. Annu Rev Ecol Syst, 1980, 11:287-310. doi:10.1146/annurev.es.11.110180.001443.
    [30] REICH P B, ELLSWORTH D S, UHL C. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic amazonian forest[J]. Funct Ecol, 1995, 9(1):65-76. doi:10.2307/2390092.
    [31] NAVAS M L, ROUMET C, BELLMANN A, et al. Suites of plant traits in species from different stages of a Mediterranean secondary succession[J]. Plant Biol, 2010, 12(1):183-196. doi:10.1111/j.1438-8677.2009. 00208.x.
    [32] MCGILL B J, ENQUIST B J, WEIHER E, et al. Rebuilding community ecology from functional traits[J]. Trends Ecol Evol, 2006, 21(4):178-185. doi:10.1016/j.tree.2006.02.002.
    [33] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. doi:10. 1038/nature02403.
    [34] DONOVAN L A, MAHERALI H, CARUSO C M, et al. The evolution of the worldwide leaf economics spectrum[J]. Trends Ecol Evol, 2011, 26(2):88-95. doi:10.1016/j.tree.2010.11.011.
    [35] ARMANI M, GOODALE U M, CHARLES-DOMINIQUE T, et al. Structural defence is coupled with the leaf economic spectrum across saplings of spiny species[J]. Oikos, 2020, 129(5):740-752. doi:10. 1111/oik.06960.
    [36] ZHANG Q M. Dataset of China Ecosystem Research Network:Dinghushan Forest Ecosystem Research Station (1998-2008)[M]. Beijing:China Agriculture Press, 2011. 张倩媚.中国生态系统研究网络数据集:鼎湖山森林生态系统研究站(1998-2008)[M].北京:中国农业出版社, 2011.
    [37] YAN B G, LIU G C, FAN B, et al. Relationships between plantstoi-chiometry and biomass in an arid-hot valley, southwest China[J]. Chin J Plant Ecol, 2015, 39(8):807-815. doi:10.17521/cjpe.2015.0077. 闫帮国,刘刚才,樊博,等.干热河谷植物化学计量特征与生物量之间的关系[J].植物生态学报, 2015, 39(8):807-815. doi:10.17521/cjpe.2015.0077.
    [38] DIAZ S, HODGSON J G, THOMPSON K, et al. The plant traits that drive ecosystems:Evidence from three continents[J]. J Veg Sci, 2004, 15(3):295-304. doi:10.1111/j.1654-1103.2004.tb02266.x.
    [39] ALONSO-FORN D, SANCHO-KNAPIK D, FERRIO J P, et al. Revi-siting the functional basis of sclerophylly within the leaf economics spectrum of oaks:Different roads to rome[J]. Curr For Rep, 2020, 6(4):260-281. doi:10.1007/s40725-020-00122-7.
    [40] MASON C M, DONOVAN L A. Does investment in leaf defenses drive changes in leaf economic strategy?A focus on whole-plant ontogeny[J]. Oecologia, 2015, 177(4):1053-1066. doi:10.1007/s00442-014-3177-2.
    [41] OSUNKOYA O O, DAUD S D, WIMMER F L. Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species[J]. Ann Bot, 2008, 102(5):845-853. doi:10.1093/aob/mcn162.
    [42] LUSK C H, ONODA Y, KOOYMAN R, et al. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients:Shade leaves punch above their weight[J]. New Phytol, 2010, 186(2):429-438. doi:10.1111/j.1469-8137.2010.03202.x.
    [43] DAMOUR G, SIMONNEAU T, COCHARD H, et al. An overview of models of stomatal conductance at the leaf level[J]. Plant Cell Environ, 2010, 33(9):1419-1438. doi:10.1111/j.1365-3040.2010.02181.x.
    [44] POORTER L, BONGERS F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7):1733-1743. doi:10.1890/0012-9658(2006)87[1733:Ltagpo]2.0.Co;2.
    [45] OSTERTAG R, WARMAN L, CORDELL S, et al. Using plant func-tional traits to restore Hawaiian rainforest[J]. J Appl Ecol, 2015, 52(4):805-809. doi:10.1111/1365-2664.12413.
    [46] CHAI Y F, YUE M, WANG M, et al. Plant functional traits suggest a change in novel ecological strategies for dominant species in the stages of forest succession[J]. Oecologia, 2016, 180(3):771-783. doi:10. 1007/s00442-015-3483-3.
    [47] DE VRIES F W T P, BRUNSTING A H M, VAN LAAR H H. Products, requirements and efficiency of biosynthesis a quantitative approach[J]. J Theor Biol, 1974, 45(2):339-377. doi:10.1016/0022-5193(74)90119-2.
    [48] SHIPLEY B, LECHOWICZ M J, WRIGHT I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum[J]. Ecology, 2006, 87(3):535-541. doi:10.1890/05-1051.
    [49] KITAJIMA K, POORTER L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species[J]. New Phytol, 2010, 186(3):708-721. doi:10.1111/j. 1469-8137.2010.03212.x.
    [50] HOU H, LIU H, HE P C, et al. Different leaf construction strategies in evergreen and deciduous species of Magnoliaceae[J]. J Trop Subtrop Bot, 2019, 27(3):272-278. doi:10.11926/jtsb.3978. 侯皓,刘慧,贺鹏程,等.木兰科常绿与落叶物种叶片构建策略的差异[J].热带亚热带植物学报, 2019, 27(3):272-278. doi:10.11926/jtsb.3978.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

韦伊,刘慧,贺鹏程,刘小容,叶清.南亚热带不同演替阶段森林优势树种叶片构建成本与机械抗性的协同关系[J].热带亚热带植物学报,2022,30(4):483~491

Copy
Share
Article Metrics
  • Abstract:256
  • PDF: 502
  • HTML: 1035
  • Cited by: 0
History
  • Received:August 16,2021
  • Revised:November 05,2021
  • Online: July 27,2022
  • Published: July 31,2022
Article QR Code