Attachment Rules of Lianas on Trunks at Different Positions in Mixed Broadleaf-conifer Forest at Jigong Mountain
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • | | | |
  • Comments
    Abstract:

    To reveal the distribution law of lianas on tree trunk, the difference of Trachelospermum divaricatum with aerial root climbing strategy in different directions on the surface of Liquidambar formosana and Pinus massoniana was analyzed in a coniferous and broadleaf mixed forest in Jigong Mountain. The results showed that the distribution of T. divaricatum on the trunk of L. formosana and P. massoniana varied with the height of the tree. At basal diameter (5 cm height) of L. formosana, the number of T. divaricatum (6.6 ind./tree) attached in the northwest was significantly higher than that in the northeast (4.6 ind./tree) and southeast (4.3 ind./tree). At the breast diameter (130 cm height), the number of T. divaricatum growing in the southwest and southeast was significantly higher than that in the northwest. At the height of basal and breast diameter of L. formosana, the mortality of T. divaricatum in the south is significantly lower than that in the north. At the height of basal diameter of P. massoniana, the mortality of T. divaricatum was the highest (35.1%) in the northwest, thus lead to the least number of T. divaricatum (4.6 ind./tree). At the height of breast diameter of P. massoniana, the number of T. divaricatum distributed in the southeast was greater than the other directions. In addition, T. divaricatum mortality in the south was greater than that in the north. Therefore, there are significant differences in the distribution of T. divaricatum in different directions of climbing trees, which varied with height and diameter at breast height, indicating that the distribution pattern of liana was regulated by both microenvironment of the trunk and physiological feature of liana.

    Reference
    [1] CAI Y L, SONG Y C. Adaptive ecology of lianas in Tiantong ever-green broad-leaved forest, Zhejiang, China:Ⅰ. Leaf anatomical characters[J]. Acta Phytoecol Sin, 2001, 25(1):90-98. 蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学:I.叶片解剖特征的比较[J].植物生态学报, 2001, 25(1):90-98.
    [2] WANG Y M, WANG Y, WANG S Y, et al. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. J Beijing For Univ, 2020, 42(5):42-49. doi:10.12171/j. 1000-1522.20190419. 王元敏,王燕,王思远,等.中国东北温带3种木质藤本植物细根解剖和形态性状研究[J].北京林业大学学报, 2020, 42(5):42-49. doi:10.12171/j.1000-1522.20190419.
    [3] GRAUEL W T, PUTZ F E. Effects of lianas on growth and regene-ration of Prioria copaifera in Darien, Panama[J]. For Ecol Manag, 2004, 190(1):99-108. doi:10.1016/j.foreco.2003.10.009.
    [4] JU Y X, SHANG Q, WANG Z W, et al. Host selection and distribution patterns of liana plants in a deciduous broadleaf forest in Jigong Mountain[J]. J Ecol Rural Environ, 2019, 35(2):205-209. doi:10. 19741/j.issn.1673-4831.2018.0196. 琚煜熙,尚晴,王忠伟,等.鸡公山落叶阔叶林藤本植物寄主选择与分布规律[J].生态与农村环境学报, 2019, 35(2):205-209. doi:10.19741/j.issn.1673-4831.2018.0196.
    [5] VIVEK P, PARTHASARATHY N. Liana community and functional trait analysis in tropical dry evergreen forest of India[J]. J Plant Ecol, 2015, 8(5):501-512. doi:10.1093/jpe/rtu031.
    [6] WRIGHT S J, SUN I F, PICKERING M, et al. Long-term changes in liana loads and tree dynamics in a Malaysian forest[J]. Ecology, 2015, 96(10):2748-2757. doi:10.1890/14-1985.1.
    [7] WANG Z W, ZHANG K M, WU N, et al. Effect of liana on the under-story species richness in deciduous broadleaf forest of Jigong Mountain in Henan[J]. J Yunnan Agric Univ (Nat Sci), 2020, 35(3):476-482. doi:10.12101/j.issn.1004-390X (n).201910028. 王忠伟,张科萌,邬娜,等.河南鸡公山落叶阔叶林藤本植物对林下物种多样性的影响[J].云南农业大学学报(自然科学), 2020, 35(3):476-482. doi:10.12101/j.issn.1004-390X (n).201910028.
    [8] SCHNITZER S A, BONGERS F. The ecology of lianas and their role in forests[J]. Trend Ecol Evol, 2002, 17(5):223-230. doi:10.1016/S0169-5347(02)02491-6.
    [9] DEWALT S J, ICKES K, NILUS R, et al. Liana habitat associations and community structure in a Bornean lowland tropical forest[J]. Plant Ecol, 2006, 186(2):203-216. doi:10.1007/s11258-006-9123-6.
    [10] ICHIHASHI R, TATENO M. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees[J]. New Phytol, 2015, 207(3):604-612. doi:10.1111/nph.13391.
    [11] ROEDER M, MCLEISH M, BECKSCHÄFER P, et al. Phylogenetic clustering increases with succession for lianas in a Chinese tropical montane rain forest[J]. Ecography, 2015, 38(8):832-841. doi:10. 1111/ecog.01051.
    [12] CAMPANELLO P I, GATTI M G, ARES A, et al. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest[J]. For Ecol Manag, 2007, 252(1/2/3):108-117. doi:10.1016/j.foreco.2007.06.032.
    [13] ROEDER M, SLIK J W F, HARRISON R D, et al. Proximity to the host is an important characteristic for selection of the first support in lianas[J]. J Veg Sci, 2015, 26(6):1054-1060. doi:10.1111/jvs.12316.
    [14] LIU G C, HUANG Y X, WANG Q G, et al. Effects of environmental factors on plant species diversity:Research progress[J]. Chin Agri Sci Bull, 2018, 34(13):83-89. doi:10.11924/j.issn.1000-6850.casb17030202. 刘冠成,黄雅曦,王庆贵,等.环境因子对植物物种多样性的影响研究进展[J].中国农学通报, 2018, 34(13):83-89. doi:10.11924/j. issn.1000-6850.casb17030202.
    [15] YAN D F, HE W, YANG X T. Spatial distribution of plant diversity in shrub layer of Quercus variabilis plantation and its relationship with light environment[J]. Chin J Appli Ecol, 2020, 31(11):3605-3613. doi:10.13287/j.1001-9332.202011.002. 闫东锋,贺文,杨喜田.栓皮栎人工林灌木层植物多样性的空间分布及其与光环境的关系[J].应用生态学报, 2020, 31(11):3605-3613. doi:10.13287/j.1001-9332.202011.002.
    [16] IBARRA-MANRÍQUEZ G, RENDÓN-SANDOVAL F J, CORNEJO-TENORIO G, et al. Lianas of Mexico[J]. Bot Sci, 2015, 93(3):365-417. doi:10.17129/botsci.123.
    [17] CHEN Y J, CHEN J W, CAI Z Q. Lianas and their functions in tropical forests[J]. Chin Bull Bot, 2007, 24(2):240-249. doi:10.3969/j.issn. 1674-3466.2007.02.017. 陈亚军,陈军文,蔡志全.木质藤本及其在热带森林中的生态学功能[J].植物学通报, 2007, 24(2):240-249. doi:10.3969/j.issn.1674-3466.2007.02.017.
    [18] CHEN Y J, ZHANG J L, CAO K F. Morphological, growth and photo-synthetic traits of two liana species in response to different light and soil nutrients[J]. Chin Bull Bot, 2008, 25(2):185-194. doi:10.3969/j. issn.1674-3466.2008.02.007. 陈亚军,张教林,曹坤芳.两种热带木质藤本幼苗形态、生长和光合能力对光强和养分的响应[J].植物学通报, 2008, 25(2):185-194. doi:10.3969/j.issn.1674-3466.2008.02.007.
    [19] WANG X F, FENG J Y, WENG S F, et al. Leaf traits and environ-mental adaptability of 4 lianas in tropical garden[J]. J SW For Univ, 2019, 39(3):166-171. doi:10.11929/j.swfu.201807049. 王晓帆,冯嘉仪,翁殊斐,等.热带园林4种木质藤本植物叶性状与环境适应能力研究[J].西南林业大学学报, 2019, 39(3):166-171. doi:10.11929/j.swfu.201807049.
    [20] PENG J B, LIU G, SUN S Q, et al. Contribution of tropical and subtropical circulation anomalies to the intensity of East Asian winter monsoon over lower-latitude region[J]. Chin J Atmos Sci, 2020, 44(5):960-974. doi:10.3878/j.issn.1006-9895.1911.19141. 彭京备,刘舸,孙淑清,等.热带和副热带环流对东亚低纬度冬季风强度影响[J].大气科学, 2020, 44(5):960-974. doi:10.3878/j.issn. 1006-9895.1911.19141.
    [21] LIU Y C, SHANG Q, ZHANG B, et al. Effects of understory liana (Trachelospermum jasminoides) on distributions of litterfall and soil organic carbon in an oak forest in central China[J]. Sustainability, 2017, 9(6):1019. doi:10.3390/su9061019.
    [22] LI L, CHEN Y J, REN H, et al. Ecological and biological characteri-stics of Bauhinia corymbosa[J]. J Trop Subtrop Bot, 2009, 17(6):528-534. doi:10.3969/j.issn.1005-3395.2009.06.002. 李玲,陈永聚,任海,等.首冠藤的生态生物学特征[J].热带亚热带植物学报, 2009, 17(6):528-534. doi:10.3969/j.issn.1005-3395. 2009.06.002.
    [23] YUAN C M, LIU W Y, LI X S, et al. Aboveground biomass of lianas and its response to anthropogenic disturbances in moist evergreen broad-leaved forests in the Ailao Mountains of southwestern China[J]. Chin J Plant Ecol, 2009, 33(5):852-859. doi:10.3773/j.issn.1005-264x.2009.05.003. 袁春明,刘文耀,李小双,等.哀牢山湿性常绿阔叶林木质藤本植物地上部分生物量及其对人为干扰的响应[J].植物生态学报, 2009, 33(5):852-859. doi:10.3773/j.issn.1005-264x.2009.05.003.
    [24] SONG H Q, NI M Y, ZHU S D. Hydraulic and photosynthetic charac-teristics differ between co-generic tree and liana species:A case study of Millettia and Gnetum in tropical forest[J]. Chin J Plant Ecol, 2020, 44(3):192-204. doi:10.17521/cjpe.2019.0304. 宋慧清,倪鸣源,朱师丹.乔木与木质藤本的水力与光合性状的差异:以热带森林崖豆藤属和买麻藤属为例[J].植物生态学报, 2020, 44(3):192-204. doi:10.17521/cjpe.2019.0304.
    [25] XIAO Z Q, MA C C, DAI J, et al. Analysis on diversity of vines in Tongbiguan Nature Reserve[J]. J Trop Subtrop Bot, 2016, 24(4):437-443. doi:10.11926/j.issn.1005-3395.2016.04.011. 肖之强,马晨晨,代俊,等.铜壁关自然保护区藤本植物多样性研究[J].热带亚热带植物学报, 2016, 24(4):437-443. doi:10.11926/j. issn.1005-3395.2016.04.011.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王忠伟,尚晴,刘彦春.鸡公山风景区针阔混交林藤本植物在树干不同方位的依附规律[J].热带亚热带植物学报,2022,30(4):492~499

Copy
Share
Article Metrics
  • Abstract:165
  • PDF: 491
  • HTML: 652
  • Cited by: 0
History
  • Received:July 24,2021
  • Revised:September 17,2021
  • Online: July 27,2022
  • Published: July 31,2022
Article QR Code