Effects of Warming and Precipitation Exclusion on Fine Root Biomass, Morphology and Nutrient Characteristics of Cunninghamia lanceolata Saplings
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • | | | |
  • Comments
    Abstract:

    In order to reveal the effects of global warming and changes in precipitation pattern on the below- ground ecological processes of forest ecosystems in the mid-subtropical regions of China, two-factor test of soil warming and isolating precipitation on Cunninghamia lanceolata was conducted at the National Field Station of Forest Ecosystems and Global Change in Sanming, Fujian Province. The results showed that compared with control (CT), the total fine root biomass of C. lanceolata saplings treated with warming (ambient+5℃, W), precipitation exclusion (ambient -50%, P) and W+P (WP) were significantly reduced by 35.7%, 51.7%, and 59.1%, respectively; the total fine root biomass treated with P and WP was significantly reduced by 24.9% and 36.4% compared with W treatment. W, P and WP increased specific root length (SRL) of 0-1 mm fine roots, while the specific root area (SRA) of 0-1 and 1-2 mm fine root had no significant changes. Compared with the CT, W had no effect on fine root N content, C/N and δ15N; P increased fine root N content and decreased fine root C/N; WP increased fine root N content, δ15N, and decreased fine root C/N. Therefore, adjusting the morphological characteristics of surface fine roots might not be the main strategy for C. lanceolata saplings under the dual environmental stress of global warming and precipitation reduction in the future. Compared with the increase of temperature, the precipitation reduction might be the main environmental factor affecting the fine root biomass and surface chemical element distribution of C. lanceolata saplings.

    Reference
    [1] MELILLO J M, STEUDLER P A, ABER J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176. doi:10.1126/science.1074153.
    [2] ARONSON E L, MCNULTY S G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality[J]. Agric For Meteorol, 2009, 149(11):1791-1799. doi:10.1016/j.agrformet. 2009.06.007.
    [3] BAI W M, WAN S Q, NIU S L, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe:Implications for ecosystem C cycling[J]. Glob Chang Biol, 2010, 16(4):1306-1316. doi:10.1111/j.1365-2486.2009. 02019.x.
    [4] IPCC. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2013:95-123.
    [5] DAI A G. Increasing drought under global warming in observations and models[J]. Nat Clim Change, 2013, 3(1):52-58. doi:10.1038/NCL IMATE1633.
    [6] CIAIS P, REICHSTEIN M, VIOVY N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2003, 437(7058):529-533. doi:10.1038/nature03972.
    [7] KURZ W A, DYMOND C C, STINSON G, et al. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature, 2008, 452(7190):987-990. doi:10.1038/nature06777.
    [8] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Rede-fining fine roots improves understanding of below-ground contri-butions to terrestrial biosphere processes[J]. New Phytol, 2015, 207(3):505-518. doi:10.1111/nph.13363.
    [9] PERSSON HÅ, STADENBERG I. Spatial distribution of fine-roots in boreal forests in eastern Sweden[J]. Plant Soil, 2009, 318(1/2):1-14. doi:10.1007/s11104-008-9811-1.
    [10] YUAN Z Y, CHEN H Y H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age:Literature review and meta-analyses[J]. Crit Rev Plant Sci, 2010, 29(4):204-221. doi:10.1080/07352689.2010.483579.
    [11] BRONSON D R, GOWER S T, TANNER M, et al. Response of soil surface CO2 flux in a boreal forest to ecosystem warming[J]. Glob Change Biol, 2008, 14(4):856-867. doi:10.1111/j.1365-2486.2007. 01508.x.
    [12] YUAN Z Y, SHI X R, JIAO F, et al. Changes in fine root biomass of Picea abies forests:Predicting the potential impacts of climate change[J]. J Plant Ecol, 2017, 11(4):595-603. doi:10.1093/jpe/rtx032.
    [13] LEUSCHNER C, HERTEL D, SCHMID I, et al. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility[J]. Plant Soil, 2004, 258(1):43-56. doi:10.1023/B:PLSO.0000016508.20173.80.
    [14] COOMES D A, GRUBB P J. Impacts of root competition in forests and woodlands:A theoretical framework and review of experiments[J]. Ecol Monogr, 2000, 70(2):171-207. doi:10.2307/2657174.
    [15] WANG J S, DEFRENNE C, MCCORMACK M L, et al. Fine-root functional trait responses to experimental warming:A global meta-analysis[J]. New Phytol, 2021, 230(5):1856-1867. doi:10.1111/nph. 17279.
    [16] BRUNNER I, HERZOG C, DAWES M A, et al. How tree roots respond to drought[J]. Front Plant Sci, 2015, 6:547. doi:10.3389/fpls. 2015.00547.
    [17] ZHOU Y M, TANG J W, MELILLO J M, et al. Root standing crop and chemistry after six years of soil warming in a temperate forest[J]. Tree Physiol, 2011, 31(7):707-717. doi:10.1093/treephys/tpr066.
    [18] Hong J T, Wu J B, Wang X D. Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants[J]. Chin J Appl Ecol, 2013, 24(9):2658-2665. doi:10.13287/j.1001-9332.2013.0517. 洪江涛,吴建波,王小丹.全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J].应用生态学报, 2013, 24(9):2658-2665. doi:10.13287/j.1001-9332.2013.0517.
    [19] CLEVELAND C C, WIEDER W R, REED S C, et al. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere[J]. Ecology, 2010, 91(8):2313-2323. doi:10.1890/09-1582.1.
    [20] CHEN G S, YANG Z J, GAO R, et al. Carbon storage in a chrono-sequence of Chinese fir plantations in southern China[J]. For Ecol Manage, 2013, 300:68-76. doi:10.1016/j.foreco.2012.07.046.
    [21] OELBERMANN K, SCHEU S. Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae:Lycosidae):Effects of prey quality[J]. Oecologia, 2002, 130(3):337-344. doi:10. 1007/s004420100813.
    [22] LYONS E M, POTE J, DACOSTA M, et al. Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses[J]. Environ Exp Bot, 2007, 59(3):307-313. doi:10.1016/j.envexpbot.2006.04.002.
    [23] FENG J X, XIONG D C, SHI S Z, et al. Effects of soil warming on the ecophysiological properties of the fine roots of Chinese fir (Cunning-hamia lanceolata) seedlings[J]. Acta Ecol Sin, 2017, 37(1):35-43. doi:10.5846/stxb201603260543. 冯建新,熊德成,史顺增,等.土壤增温对杉木幼苗细根生理生态性质的影响[J].生态学报, 2017, 37(1):35-43. doi:10.5846/stxb201603260543.
    [24] WAN S Q, NORBY R J, PREGITZER K S, et al. CO2enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots[J]. New Phytol, 2004, 162(2):437-446. doi:10. 1111/j.1469-8137.2004.01034.x.
    [25] XIONG D C, YANG Z J, CHENG G S, et al. Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation[J]. Soil Biol Biochem, 2018, 123:180-189. doi:10.1016/j.soilbio.2018.05.009.
    [26] TAN N D, LI X, WU T, et al. Effects of warming on biomass allocation patterns and nutrient accumulations of four dominant tree species in mixed forest of Dinghushan, China[J]. J Trop Subtrop Bot, 2021, 29(4):389-400. doi:10.11926/jtsb.4325. 谭钠丹,李旭,吴婷,等.增温对鼎湖山混交林中4种优势树种生物量分配和养分积累的影响[J].热带亚热带植物学报, 2021, 29(4):389-400. doi:10.11926/jtsb.4325.
    [27] MELILLO J M, BUTLER S, JOHNSON J, et al. Soil warming, carbon-nitrogen interactions, and forest carbon budgets[J]. Proc Natl Acad Sci USA, 2011, 108(23):9508-9512. doi:10.1073/pnas.1018189108.
    [28] SHI Y G, XIONG D C, YE W M, et al. Effects of soil and air warming on fine root biomass and leaf traits of Chinese fir saplings[J]. Chin J Ecol, 2021, 40(7):1916-1923. doi:10.13292/j.1000-4890. 202107.014. 时应贵,熊德成,叶旺敏,等.土壤和大气增温对杉木幼树细根生物量和叶片性状的影响[J].生态学杂志, 2021, 40(7):1916-1923. doi:10.13292/j.1000-4890.202107.014.
    [29] JARVI M P, BURTON A J. Root respiration and biomass responses to experimental soil warming vary with root diameter and soil depth[J]. Plant Soil, 2020, 451(1/2):435-446. doi:10.1007/s11104-020-04540-1.
    [30] FENG J X, XIONG D C, DENG F, et al. Effects of soil warming and precipitation exclusion and their interaction on fine roots production of Chinese fir (Cunninghamia lanceolata) seedlings [J]. Acta Ecol Sin, 2017, 37(4):1119-1127. doi:10.5846/stxb201606211207. 冯建新,熊德成,邓飞,等.土壤增温、隔离降水及其交互作用对杉木幼苗细根生产的影响[J].生态学报, 2017, 37(4):1119-1127. doi:10.5846/stxb201606211207.
    [31] SHI S Z, XIONG D C, DENG F, et al. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedling [J]. Chin J Plant Ecol, 2017, 41(2):186-195. doi:10.17521/cjpe.2016.0274. 史顺增,熊德成,邓飞,等.土壤增温、氮添加及其交互作用对杉木幼苗细根生产的影响[J].植物生态学报, 2017, 41(2):186-195. doi:10.17521/cjpe.2016.0274.
    [32] KNUTZEN F, MEIER I C, LEUSCHNER C. Does reduced precipi-tation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)?Comparing provenances across a precipitation gradient[J]. Tree Physiol, 2015, 35(9):949-963. doi:10. 1093/treephys/tpv057.
    [33] JIA S X, WANG Z Q, LI X P, et al. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica [J]. Tree Physiol, 2011, 31(7):718-726. doi:10.1093/treephys/tpr057.
    [34] METCALFE D B, MEIR P, ARAGÃO L E O C, et al. The effects of water availability on root growth and morphology in an Amazon rain-forest[J]. Plant Soil, 2008, 311(1/2):189-199. doi:10.1007/s11104-008-9670-9.
    [35] BEYER F, HERTEL D, LEUSCHNER C. Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition[J]. Plant Soil, 2013, 373(1/2):143-156. doi:10.1007/s11104-013-1752-7.
    [36] ZHONG B Y, XIONG D C, SHI S Z, et al. Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings[J]. Chin J Appli Ecol, 2016, 27(9):2807-2814. doi:10.13287/j.1001-9332.201609.023. 钟波元,熊德成,史顺增,等.隔离降水对杉木幼苗细根生物量和功能特征的影响[J].应用生态学报, 2016, 27(9):2807-2814. doi:10.13287/j.1001-9332.201609.023.
    [37] POORTER H, RYSER P. The limits to leaf and root plasticity:What is so special about specific root length?[J]. New Phytol, 2015, 206(4):1188-1190. doi:10.1111/nph.13438.
    [38] SARDANS J, RIVAS-UBACH A, PEÑUELAS J. The elemental stoi-chiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function:A review and perspectives[J]. Biogeochemistry, 2012, 111(1/2/3):1-39. doi:10.1007/s10533-011-9640-9.
    [39] BASSIRIRAD H. Kinetics of nutrient uptake by roots:Responses to global change[J]. New Phytol, 2000, 147(1):155-169. doi:10.1046/j. 1469-8137.2000.00682.x.
    [40] ACOSTA-MARTÍNEZ V, COTTON J, GARDNER T, et al. Predo-minant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeo-chemical cycling[J]. Appl Soil Ecol, 2014, 84:69-82. doi:10.1016/j. apsoil.2014.06.005.
    [41] SARDANS J, RIVAS-UBACH A, PEÑUELAS J. The C:N:P stoi-chiometry of organisms and ecosystems in a changing world:A review and perspectives[J]. Persp Plant Ecol Evol Syst, 2012, 14(1):33-47. doi:10.1016/j.ppees.2011.08.002.
    [42] HANDLEY L L, RAVEN J A. The use of natural abundance of nitrogen isotopes in plant physiology and ecology[J]. Plant Cell Environ, 1992, 15(9):965-985. doi:10.1111/j.1365-3040.1992.tb01650.x.
    [43] WATMOUGH S A. An assessment of the relationship between potential chemical indices of nitrogen saturation and nitrogen deposi-tion in hardwood forests in southern Ontario[J]. Environ Monit Assess, 2010, 164(1/2/3/4):9-20. doi:10.1007/s10661-009-0870-4.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

吴帆,熊德成,周嘉聪,魏智华,郑蔚,张丽,杨智杰.增温及隔离降水对杉木幼树细根生物量、形态及养分特征的影响[J].热带亚热带植物学报,2022,30(4):509~517

Copy
Share
Article Metrics
  • Abstract:204
  • PDF: 383
  • HTML: 521
  • Cited by: 0
History
  • Received:July 26,2021
  • Revised:September 16,2021
  • Online: July 27,2022
  • Published: July 31,2022
Article QR Code