Identification and Expression Pattern Analysis of C4H Genes in Phyllostachys edulis
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To reveal the molecular characteristics and expression pattern of C4H genes in moso bamboo (Phyllostachys edulis), six C4H gene members (PeC4H1-PeC4H6) from moso bamboo genomic database were identified by bioinformatics method. The length of gene coding region ranged from 1 506 to 1 695 bp, encoding 501-564 aa, and all of them have conserved heme binding domain, threonine binding channel motif and five characteristic substrate recognition sites, which belong to the cytochrome P450 superfamily. Phylogenetic analysis showed that the six PeC4Hs could be divided into two classes, containing 2 and 4 members, respectively. Transcriptome analysis showed that there were significant differences in the expression of PeC4Hs in 26 tissues of moso bamboo, and the expression of PeC4Hs in bamboo shoots at different heights were different by qPCR. There were a variety of cis-regulatory elements in response to stress and hormone signals in the promoter sequences of PeC4Hs. The expression of PeC4Hs was affected by drought and GA3. Under drought, only PeC4H3/4 expression was significantly up-regulated in roots, while others were down-regulated. Treated by GA3, the expression of PeC4H3/6 in leaves was responded rapidly and significantly up-regulated at first and then gradually decreased. The expression of PeC4H2/5 in roots was briefly down-regulated in the first hour and then significantly increased, finally recovered to the untreated level at 8 h. Therefore, PeC4Hs might play an important role in the lignification process of bamboo shoot and the response to abiotic stress.

    Reference
    [1] KUMAR S, OMER S, PATEL K, et al. Cinnamate 4-hydroxylase (C4H) genes from Leucaena leucocephala:A pulp yielding leguminous tree[J]. Mol Biol Rep, 2013, 40(2):1265-1274. doi:10.1007/s11033-012-2169-8.
    [2] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress[J]. Curr Opin Plant Biol, 2002, 5(3):218-223. doi:10.1016/S1369-5266(02)00256-X.
    [3] KOOPMANN E, LOGEMANN E, HAHLBROCK K. Regulation and functional expression of cinnamate 4-hydroxylase from parsley[J]. Plant Physiol, 1999, 119(1):49-56. doi:10.1104/pp.119.1.49.
    [4] RAES J, ROHDE A, CHRISTENSEN J H, et al. Genome-wide charac-terization of the lignification toolbox in Arabidopsis[J]. Plant Physiol, 2003, 133(3):1051-1071. doi:10.1104/PP.103.026484.
    [5] XU H, PARK N I, LI X H, et al. Molecular cloning and character-rization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis[J]. Bioresour Technol, 2010, 101(24):9715-9722. doi:10.1016/j.biortech. 2010.07.083.
    [6] CHEN A H, CHAI Y R, LI J N, et al. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus)[J]. J Biochem Mol Biol, 2007, 40(2):247-260. doi:10.5483/BMBREP.2007.40.2.247.
    [7] CAROCHA V, SOLER M, HEFER C, et al. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis[J]. New Phytol, 2015, 206(4):1297-1313. doi:10.1111/nph.13313.
    [8] MILLAR D J, LONG M, DONOVAN G, et al. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids[J]. Phytochemistry, 2007, 68(11):1497-1509. doi:10.1016/j. phytochem.2007.03.018.
    [9] BELL-LELONG D A, CUSUMANO J C, MEYER K, et al. Cinnamate-4-hydroxylase expression in Arabidopsis:Regulation in response to development and the environment[J]. Plant Physiol, 1997, 113(3):729-738. doi:10.1104/pp.113.3.729.
    [10] SEWALT V, NI W, BLOUNT J W, et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydro-xylase[J]. Plant Physiol, 1997, 115(1):41-50. doi:10.1104/PP.115.1.41.
    [11] BLOUNT J W, KORTH K L, MASOUD S A, et al. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway[J]. Plant Physiol, 2000, 122(1):107-116. doi:10.1104/PP.122.1.107.
    [12] PHIMCHAN P, CHANTHAI S, BOSLAND P W, et al. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress[J]. J Agric Food Chem, 2014, 62(29):7057-7062. doi:10.1021/jf4051717.
    [13] ZHU C L, YANG K B, XU X R, et al. Molecular characteristics of NIP genes in Phyllostachys edulis and their expression patterns in response to stresses[J]. Sci Silv Sin, 2021, 57(1):64-76. doi:10.11707/j.1001-7488.20210107. 朱成磊, 杨克彬, 徐秀荣, 等. 毛竹NIP基因的分子特征及应答胁迫的表达模式[J]. 林业科学, 2021, 57(1):64-76. doi:10.11707/j. 1001-7488.20210107.
    [14] LI Y M, FENG P F. Bamboo resources in China based on the Ninth National Forest Inventory data[J]. World Bamboo Rattan, 2019, 17(6):45-48. doi:10.12168/sjzttx.2019.06.010. 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6):45-48. doi:10.12168/sjzttx.2019.06.010.
    [15] GAO Z M, PENG Z H, LI X P, et al. Isolation and tissue specific expression analysis of phenylanlanine ammonialyase gene from Phyllo- stachys edulis[J]. For Res, 2009, 22(3):449-453. doi:10.3321/j.issn:1001-1498.2009.03.025. 高志民, 彭镇华, 李雪平, 等. 毛竹苯丙氨酸解氨酶基因的克隆及组织特异性表达分析[J]. 林业科学研究, 2009, 22(3):449-453. doi:10.3321/j.issn:1001-1498.2009.03.025.
    [16] XU H, YANG K B, ZHU C L, et al. Preliminary study on the function of cinnamoyl-CoA reductase gene PeCCR of moso bamboo (Phyllo-stachys edulis)[J]. For Res, 2020, 33(2):77-84. doi:10.13275/j.cnki. lykxyj.2020.02.010. 徐浩, 杨克彬, 朱成磊, 等. 毛竹肉桂酰辅酶A还原酶基因PeCCR功能初步研究[J]. 林业科学研究, 2020, 33(2):77-84. doi:10. 13275/j.cnki.lykxyj.2020.02.010.
    [17] YANG K B, SHAN X M, SHI J J, et al. Identification and expression analysis of 4CL gene family in Phyllostachys edulis[J]. J Nucl Agric Sci, 2021, 35(1):72-82. doi:10.11869/j.issn.100-8551.2021.01.0072. 杨克彬, 单雪萌, 史晶晶, 等. 毛竹4-香豆酸辅酶A连接酶基因家族鉴定及表达分析[J]. 核农学报, 2021, 35(1):72-82. doi:10.11869/j. issn.100-8551.2021.01.0072.
    [18] LI L C, YANG K B, WANG S N, et al. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses[J]. Plant Cell Rep, 2020, 39(6):751-763. doi:10.1007/s00299-020-02528-w.
    [19] JIN S Y, LU M Z, GAO J. Cloning and expression analysis of the C4H gene involved in the lignin biosynthesis in Phyllostachys edulis[J]. For Res, 2010, 23(3):319-325. 金顺玉, 卢孟柱, 高健. 毛竹木质素合成相关基因C4H的克隆及组织表达分析[J]. 林业科学研究, 2010, 23(3):319-325.
    [20] CHEN C J, CHEN H, ZHANG Y, et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202. doi:10.1016/j.molp.2020.06.009.
    [21] ZHAO H S, GAO Z M, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10):giy115. doi:10.1093/GIGASCI ENCE/GIY115.
    [22] LESCOT M, DEHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucl Acids Res, 2002, 30(1):325-327. doi:10.1093/nar/30.1.325.
    [23] KUMAR S, STECHER G, TAMURA K. MEGA7:Molecular evolu-tionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874. doi:10.1093/molbev/msw054.
    [24] FAN C J, MA J M, GUO Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573. doi:10.1371/journal.pone.0056573.
    [25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4):402-408. doi:10.1006/meth.2001.1262.
    [26] CHAPPLE C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49(1):311-343. doi:10.1146/annurev.arplant.49.1.311.
    [27] SCHOCH G A, ATTIAS R, LE RET M, et al. Key substrate recog-nition residues in the active site of a plant cytochrome P450, CYP73A1. Homology model guided site-directed mutagenesis[J]. Eur J Biochem, 2003, 270(18):3684-3695. doi:10.1046/j.1432-1033.2003.03739.x.
    [28] RENAULT H, DE MAROTHY M, JONASSON G, et al. Gene duplication leads to altered membrane topology of a cytochrome P450 enzyme in seed plants[J]. Mol Biol Evol, 2017, 34(8):2041-2056. doi:10.1093/molbev/msx160.
    [29] PENG Z H, LU Y, LI L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461. doi:10.1038/ng.2569.
    [30] FAHRENDORF T, DIXON R A. Stress responses in alfalfa (Medicago sativa L.):XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450[J]. Arch Biochem Biophys, 1993, 305(2):509-515. doi:10.1006/abbi.1993.1454.
    [31] XIA J X, LIU Y J, YAO S B, et al. Characterization and expression profiling of Camellia sinensis cinnamate 4-hydroxylase genes in phenyl-propanoid pathways[J]. Genes (Basel), 2017, 8(8):193. doi:10.3390/genes8080193.
    [32] MIZUTANI M, OHTA D, SATO R. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta[J]. Plant Physiol, 1997, 113(3):755-763. doi:10.1104/pp.113.3.755.
    [33] CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nat Biotechnol, 2007, 25(7):759-761. doi:10.1038/nbt1316.
    [34] SCHILMILLER A L, STOUT J, WENG J K, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and develop-ment in Arabidopsis[J]. Plant J, 2009, 60(5):771-782. doi:10.1111/j. 1365-313X.2009.03996.x.
    [35] SONG X L, KONG B, GAO Z M, et al. Identification and expression analysis of the APX gene family in Phyllostachys edulis[J]. J Trop Subtrop Bot, 2020, 28(3):255-264. doi:10.11926/jtsb.4155. 宋笑龙, 孔波, 高志民, 等. 毛竹APX家族基因鉴定和表达分析[J]. 热带亚热带植物学报, 2020, 28(3):255-264. doi:10.11926/jtsb.4155.
    [36] HUANG Z, JIN S H, GUO H D, et al. Genome-wide identification and characterization of TIFY family genes in moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J]. PeerJ, 2016, 4:e2620. doi:10.7717/peerj.2620.
    [37] ZHANG H X, WANG H H, ZHU Q, et al. Transcriptome character-rization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications[J]. BMC Plant Biol, 2018, 18(1):125. doi:10.1186/s12870-018-1336-z.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李广柱,朱成磊,杨克彬,王新悦,高志民.毛竹C4H基因的鉴定及其表达模式分析[J].热带亚热带植物学报,2022,30(2):151~160

Copy
Share
Article Metrics
  • Abstract:392
  • PDF: 576
  • HTML: 1491
  • Cited by: 0
History
  • Received:June 02,2021
  • Revised:July 28,2021
  • Online: March 30,2022
Article QR Code