Functional Characteristics of Castanopsis fargesii Fine Roots and Their Relationship with Soil Factors at Different Elevations in Guoyan Mountain
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • | | | |
  • Comments
    Abstract:

    In order to reveal the adaptation mechanism of fine root functional characters of Castanopsis fargesii to environmental changes, the relationship between functional traits of fine roots and soil factors of C. fargesii at 500, 700 and 900 m altitude in Guoyanshan was studied. The results showed that the fine root biomass was positively correlated with fine root length density, surface area density, tissue density and volume density. Fine root length density, volume density, surface area density and specific root length had significantly positive correlations each other, and which had significantly negative correlations with fine root tissue density. The contents of rhizosphere soil water, C and N had significant positive correlation with fine root specific root length, root length density, bulk density and surface area density, while those had positive correlation with soil bulk density and fine root tissue density. The fine root biomass, root length density, surface area density and volume density at altitude 700 m were significantly higher than those at 500 and 900 m. The root length density and surface area density were negatively correlated with soil depth at altitude 500 and 900 m; while the tissue density of fine roots at 500 m altitude was positively correlated with soil depth. Therefore, Castanopsis fargesii in Guoyanshan could change its fine root function traits in order to adapt to the changes in altitude and soil.

    Reference
    [1] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4): 335. doi: 10.1071/BT02124.
    [2] KOU L, JIANG L, FU X L, et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations[J]. New Phytol, 2018, 218(4): 1450-1461. doi: 10.1111/nph.15066.
    [3] WEI X, ZHANG G Z. Progress and prospect in the main research realms of tree fine roots[J]. Chin Agric Sci Bull, 2008, 24(5): 143-147. 卫星, 张国珍. 树木细根主要研究领域及展望[J]. 中国农学通报, 2008, 24(5): 143-147.
    [4] QI D H, WEN Z M, Y S S, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chin J Appl Ecol, 2015, 26(7): 1921-1927. doi: 10.13287/j.1001-9332.20150506.016. 戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报, 2015, 26(7): 1921-1927. doi: 10.13287/j.1001-9332.20150506.016.
    [5] QUAN W, YU S N, WANG G B, et al. Seasonal variations of fine root special root length along an elevation gradient in the Wuyi Mountains of southeastern China[J]. J Nanjing For Univ Nat Sci Ed, 2011, 35(6): 139-142. doi: 10.3969/j.issn.1000-2006.2011.06.028. 权伟, 余少娜, 王国兵, 等. 武夷山不同海拔植被土壤细根比根长季节动态[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 139-142. doi: 10.3969/j.issn.1000-2006.2011.06.028.
    [6] SIERRA C N, HERTEL D, BECKER J N, et al. Biomass, morphology, and dynamics of the fine root system across a 3000-m elevation gradient on Mt. Kilimanjaro[J]. Front Plant Sci, 2020, 11: 13. doi: 10.3389/fpls.2020.00013.
    [7] DING J X, KONG D L, ZHANG Z L, et al. Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal- dominated alpine coniferous forests[J]. J Ecol, 2020, 108(6): 2544-2556. doi: 10.1111/1365-2745.13407.
    [8] YAO J, LI Y, WEI L P, et al. Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing[J]. Acta Ecol Sin, 2013, 33(13): 3907-3915. doi: 10.5846/stxb201210011367. 姚婧, 李颖, 魏丽萍, 等. 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化[J]. 生态学报, 2013, 33(13): 3907-3915. doi: 10.5846/stxb201210011367.
    [9] ZHOU Y J, CHENG L, WANG M T, et al. Seasonal changes of fine root traits in Pinus taiwanensis Hayata at different altitudes in the Wuyi Mountains[J]. Acta Ecol Sin, 2019, 39(12): 4530-4539. doi: 10.5846/stxb201806211367. 周永姣, 程林, 王满堂, 等. 武夷山不同海拔黄山松细根性状季节变化[J]. 生态学报, 2019, 39(12): 4530-4539. doi: 10.5846/stxb201806211367.
    [10] YANG H M, WANG D M. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors[J]. Acta Pratac Sin, 2011, 20(2): 244-252. 杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 2011, 20(2): 244-252.
    [11] KRAFT N J B, VALENCIA R, ACKERLY D D. Functional traits and niche: Based tree community assembly in an Amazonian forest[J]. Science, 2008, 322(5901): 580-582. doi: 10.1126/science.1160662.
    [12] HONG T. δ13C and δ15N Traits of dominant trees and their responses to elevations in Lingshi Mountain of southeastern coastal zone[D]. Fuzhou: Fujian agriculture and Forestry University, 2013: 1-138. 洪滔. 东南海岸带灵石山优势树种氮、碳同位素的海拔结构与海拔环境响应[D]. 福州: 福建农林大学, 2013: 1-138.
    [13] YU L Z, DING G Q, ZHU J J, et al. Effects of fertilization on fine root biomass of Larix kaempferi plantation[J]. Chin J Appl Ecol, 2007, 18(4): 713-720. 于立忠, 丁国泉, 朱教君, 等. 施肥对日本落叶松人工林细根生物量的影响[J]. 应用生态学报, 2007, 18(4): 713-720.
    [14] YANG L Y, LUO T X, WU S T. Fine root biomass and its depth distribution across the primitive Korean pine and broad-leaved forest and its secondary forests in Changbai Mountain, northeast China[J]. Acta Ecol Sin, 2007, 27(9): 3609-3617. doi: 10.3321/j.issn:1000-0933.2007.09.008. 杨丽韫, 罗天祥, 吴松涛. 长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征[J]. 生态学报, 2007, 27(9): 3609-3617. doi: 10.3321/j.issn:1000-0933.2007.09.008.
    [15] XIANG L, CHEN F Q, GENG M Y, et al. Response of leaf functional traits of shrubs to altitude in Rhododendron latoucheae communities in Mt. Jinggangshan, Jiangxi, China[J]. J Trop Subtrop Bot, 2019, 27(2): 129-138. doi: 10.11926/jtsb.3930. 向琳, 陈芳清, 耿梦娅, 等. 井冈山鹿角杜鹃群落灌木层植物叶功能性状对海拔梯度的响应[J]. 热带亚热带植物学报, 2019, 27(2): 129-138. doi: 10.11926/jtsb.3930.
    [16] HUANG L, WENG X Q, HOU L H, et al. Effects of different forms of nitrogen and potassium nutrition on growth and nitrogen absorption of Castanopsis fargesii seedlings[J]. J CS Univ For Technol, 2019, 39(9): 39-47. doi: 10.14067/j.cnki.1673-923x.2019.09.007. 黄玲, 翁贤权, 侯利涵, 等. 不同形态氮及钾营养对栲树苗生长和氮吸收的影响[J]. 中南林业科技大学学报, 2019, 39(9): 39-47. doi: 10.14067/j.cnki.1673-923x.2019.09.007.
    [17] XU Y Y, ZHANG S, LI J F, et al. Studies on the species diversity of Castanopsis fagasii community at different elevation gradient in Guoyanshan Nature Reserve[J]. For Prosp Des, 2019, 39(2): 1-5. 许瑶瑶, 张硕, 李剑飞, 等. 郭岩山自然保护区不同海拔梯度栲树群落物种多样性研究[J]. 林业勘察设计, 2019, 39(2): 1-5.
    [18] LI L S. Distribution pattern of fine roots and soil moisture characteristics of rain-fed jujube plantation in hilly area of Loess Plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2016: 1-111. 李陆生. 山地旱作枣园细根分布格局及其土壤水分生态效应[D]. 杨凌: 西北农林科技大学, 2016: 1-111.
    [19] JIANG S G. Review on soil bulk density determination method[J]. Hubei Agric Sci, 2019, 58(S2): 82-86. doi: 10.14088/j.cnki.issn0439-8114.2019.S2.017. 江胜国. 国内土壤容重测定方法综述[J]. 湖北农业科学, 2019, 58(S2): 82-86. doi: 10.14088/j.cnki.issn0439-8114.2019.S2.017.
    [20] DING J, WU Q, YAN H, et al. Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest[J]. Biodiv Sci, 2011, 19(2): 158-167. doi: 10.3724/SP.J.1003.2011.10312. 丁佳, 吴茜, 闫慧, 等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响[J]. 生物多样性, 2011, 19(2): 158-167. doi: 10.3724/SP.J.1003.2011.10312.
    [21] MORRIS C. Multivariate analysis of ecological data using Canoco 5, 2nd edition[J]. Afr J Range For Sci, 2015, 32(4): 289-290. doi: 10.2989/10220119.2015.1015053.
    [22] SHI Y, WEN Z M, GONG S H. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China[J]. Acta Ecol Sin, 2011, 31(22): 6805-6814. 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22): 6805-6814.
    [23] ZHANG Y Q. Effects of environmental factors on plant functional traits and the relationship between functional traits in Taishan woody plants[D]. Ji'nan: Shandong University, 2014: 1-83. 张月强. 探究泰山木本植物功能性状间的关系及对环境因子的响应[D]. 济南: 山东大学, 2014: 1-83.
    [24] PREGITZER K S, KING J S, BURTON A J, et al. Responses of tree fine roots to temperature [J]. New Phytol, 2000, 147(1): 105-115. doi: 10.1046/J.1469-8137.2000.00689.X.
    [25] ZHAO G J. Response of root morphological characteristics to soil water change of two native species in Loess Hilly-gully region under intercropping[D]. Yangling: Northwest Agricultural & Forestry University, 2014: 1-54. 赵国靖. 黄土丘陵区两乡土草混播下根系形态特征及其对土壤水分变化的响应[D]. 杨凌: 西北农林科技大学, 2014: 1-54.
    [26] XU Y. Fine root morphology anatomy and tissue nitrogen and carbon of the first five order roots in twenty-seven Chinese tropical hardwood tree species[D]. Harbin: Northeast Forestry University, 2011: 1-63. 许旸. 中国热带27个阔叶树种不同根序细根的形态特征、解剖结构和碳氨研究[D]. 哈尔滨: 东北林业大学, 2011: 1-63.
    [27] MEI L, WANG Z Q, HAN Y Z, et al. Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density[J]. Chin J Appl Ecol, 2006, 17(1): 1-4. 梅莉, 王政权, 韩有志, 等. 水曲柳根系生物量、比根长和根长密度的分布格局[J]. 应用生态学报, 2006, 17(1): 1-4.
    [28] YIN Y P, ZHANG Y Q, SHEN Y H, et al. Screening of soybean genotype with high phosphorus efficiency using root morphology and architecture[J]. Mol Plant Breed, 2015, 13(5): 999-1008. doi: 10.13271/j.mpb.013.000999. 尹元萍, 张雅琼, 申毓晗, 等. 利用根系形态构型筛选磷高效大豆基因型[J]. 分子植物育种, 2015, 13(5): 999-1008. doi: 10.13271/j.mpb.013.000999.
    [29] LIU W. Effects of soil bulk density on hydraulic conductivity of maize roots under drying and wet conditions[J]. Acta Pedol Sin, 2003, 40(5): 779-782. 刘晚. 干湿条件下土壤容重对玉米根系导水率的影响[J]. 土壤学报, 2003, 40(5): 779-782.
    [30] MATERECHERA S A, DEXTER A R, ALSTON A M. Penetration of very strong soils by seedling roots of different plant species[J]. Plant Soil, 1991, 135(1): 31-41. doi: 10.1007/BF00014776.
    [31] AERTS R, CHAPIN Ⅲ F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns[J]. Adv Ecol Res, 1999, 30: 1-67. doi: 10.1016/S0065-2504(08)60016-1.
    [32] WANG Q C, CHENG Y H. Response of fine roots to soil nutrient spatial heterogeneity [J]. Chin J Appl Ecol, 2004, 15(6): 1063-1068. 王庆成, 程云环. 土壤养分空间异质性与植物根系的觅食反应[J]. 应用生态学报, 2004, 15(6): 1063-1068.
    [33] ALVAREZ-URIA P, KÖRNER C. Fine root traits in adult trees of evergreen and deciduous taxa from low and high elevation in the Alps[J]. Alpine Bot, 2011, 121(2): 107-112. doi: 10.1007/s00035-011-0092-6.
    [34] GAN Y W, LI L, LI L H, et al. Study of root distribution of walnut/ wheat intercropping system in southern Xinjiang[J]. Acta Agric Bor Sin, 2015, 24(3): 102-110. doi: 10.7606/j.issn.1004-1389.2015.03.016. 甘雅文, 李隆, 李鲁华, 等. 南疆核桃间作冬麦复合系统根系分布特征研究[J]. 西北农业学报, 2015, 24(3): 102-110. doi: 10.7606/j.issn.1004-1389.2015.03.016.
    [35] FRANSEN B, DE KROON H, BERENDSE F. Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability[J]. Oecologia, 1998, 115(3): 351-358. doi: 10.1007/s004420050527.
    [36] YAN H, SU Y Q, ZHU Y Y, et al. Distribution characters of fine root of Populus plantation and its relation to properties of soil in the northern slope of Qinling Mountains[J]. J Nanjing For Univ (Nat Sci), 2009, 33(2): 85-89. doi: 10.3969/j.issn.1000-2006.2009.02.021. 燕辉, 苏印泉, 朱昱燕, 等. 秦岭北坡杨树人工林细根分布与土壤特性的关系[J]. 南京林业大学学报(自然科学版), 2009, 33(2): 85-89. doi: 10.3969/j.issn.1000-2006.2009.02.021.
    [37] LI A Q, ZHANG S S, WANG H R, et al. Fine root morphological characteristics and its functions in mature Chinese fir plantations along an elevation gradient in Dabie Mountains[J]. Acta Ecol Sin, 2020, 40(2): 719-727. doi: 10.5846/stxb201901250192. 李爱琴, 张莎莎, 王会荣, 等. 杉木成熟林细根形态与功能特征的海拔梯度变异特点[J]. 生态学报, 2020, 40(2): 719-727. doi: 10.5846/stxb201901250192.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈逸飞,林晨蕾,张硕,郑德祥,靳少非,卢丰林,林建东.郭岩山不同海拔丝栗栲细根功能性状及其与土壤因子的关系[J].热带亚热带植物学报,2022,30(3):413~422

Copy
Share
Article Metrics
  • Abstract:171
  • PDF: 465
  • HTML: 685
  • Cited by: 0
History
  • Received:May 15,2021
  • Online: June 07,2022
  • Published: May 31,2022
Article QR Code