Screening of Metabolites and Genes Related to Floral Formation of Chinese Narcissus Induced by Ethylene
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In order to understand the mechanism of the narcissus (Narcissus tazetta var. chinensis) floral induction, the differentially expressed metabolites and genes were screened from the outermost buds treated with exogenous ethylene by using metabolome and transcriptome sequencing techniques. The results showed that 12 differentially expressed metabolites (DEMs) were detected, including 7 up-regulated and 5 down-regulated DEMs. Among them, (±) 7-epigenJasmonic acid, dopamine and spermidine might be positively correlated with narcissus floral induction, while indole and its derivatives were negatively correlated. A total of 1 021 differentially expressed genes (DEGs) were identified in the transcriptome, including 615 up-regulated and 406 down-regulated DEGs. Forty-five differentially expressed genes related to ethylene signal transduction and flowering were identified in the DEGs. The changes of endogenous plant hormone (especially ethylene) signaling pathway in narcissus bulbs were activated firstly by exogenous ethylene, and the floral induction of narcissus via exogenous ethylene was closely related to the up-regulated expression of FPF1 and MADS15. Nine genes correlated with flowering were verified by qRT-PCR analysis and the expression profiles were consistent with the RNA-Seq results. Therefore, these DEMs and DEGs might have vital function on the narcissus floral induction, which might play an important role in the floral formation of narcissus induced exogenous ethylene.

    Reference
    [1] YE J B. A study on mechanisms and application of Narcissus tazetta var. chinensis Roem's flower forcing technique[J]. Chin Hort Abstr, 2009, 25(7):26-28. doi:10.3969/j.issn.1672-0873.2009.07.012. 叶季波. 中国水仙鳞茎催花技术机理及应用研究[J]. 中国园艺文摘, 2009, 25(7):26-28. doi:10.3969/j.issn.1672-0873.2009.07.012.
    [2] Chen X L, Lu M Y. Progress of studies on application of ethrel in plant flower-formation regulation[J]. Guangxi Agric Sci, 2005, 36(2):110-112. doi:10.3969/j.issn.2095-1191.2005.02.008. 陈香玲, 卢美英. 乙烯利在植物成花方面的应用及研究进展[J]. 广西农业科学, 2005, 36(2):110-112. doi:10.3969/j.issn.2095-1191. 2005.02.008.
    [3] ZHANG J D. Study on chemical regulation of Narcissus blooms[J]. J Zhangzhou Teach Coll, 1995, 9(4):112-112. 章骏德. 水仙化控的增花研究[J]. 漳州师范学院学报(哲学社会科学版), 1995, 9(4):112-115.
    [4] IMANISHI H. Effects of exposure of bulbs to smoke and ethylene on flowering of Narcissus tazetta cultivar ‘Grand Soleil d’Or'[J]. Sci Hort, 1983, 21(2):173-180.
    [5] SHEN Y H, JIANG T, ZHAO W W, et al. Study on technology and mechanism of ethylene treatment promotes the formation of more flowers of Narcissus tazetta var. chinensis[J]. J Agric Biotechnol, 2019, 27(6):1003-1015. doi:10.3969/j.issn.1674-7968.2019.06.006. 申艳红, 姜涛, 赵湾湾, 等. 乙烯处理水仙催多花技术和机理的研究[J]. 农业生物技术学报, 2019, 27(6):1003-1015. doi:10.3969/j. issn.1674-7968.2019.06.006.
    [6] FANG Z. Morphological study on flower bud differentiation of Narcissus tazetta L. var. chinensis Roen[D]. Fuzhou:Fujian Agriculture and Forestry University, 2017:11-13. 方舟. 水仙‘金玉’花芽分化研究[D]. 福州:福建农林大学, 2017:11-13.
    [7] ZHANG X Q, GAO J, PENG Z H. Morphological observation on flower bud differentiation and influences of storage conditions on the quantity of flower buds of Narcissus tazetta var. chinensis[J]. Bull Bot Res, 2012, 32(5):549-553. 张晓晴, 高健, 彭镇华. 中国水仙花芽分化观察及储藏条件对花芽数的影响研究[J]. 植物研究, 2012, 32(5):549-553.
    [8] LI X L, YUAN Z Y, GAO D S. The research achievements on mecha-nism of floral formation in plants[J]. Acta Bot Boreali-Occid Sin, 2002, 22(1):173-183. doi:10.3321/j.issn:1000-4025.2002.01.031. 李宪利, 袁志友, 高东升. 高等植物成花分子机理研究现状及展望[J]. 西北植物学报, 2002, 22(1):173-183. doi:10.3321/j.issn:1000-4025.2002.01.031.
    [9] KRAJNČIČ B, NEMEC J. The effect of jasmonic acid on flowering in Spirodela polyrrhiza (L.) Schleiden[J]. J Plant Physiol, 1995, 146(5/6):754-756. doi:10.1016/S0176-1617(11)81945-0.
    [10] HUANG Y M, ZENG X C. Induction effect of jasmonic acid (JA) related compounds on floret opening in rice[J]. Hubei Agric Sci, 2008, 47(10):1125-1127. doi:10.3969/j.issn.0439-8114.2008.10.008. 黄友明, 曾晓春. 茉莉酸相关化合物对水稻颖花开放的诱导效应[J]. 湖北农业科学, 2008, 47(10):1125-1127. doi:10.3969/j.issn.0439-8114.2008.10.008.
    [11] KHURANA J P, TAMOT B K, MAHESHWARI N, et al. Role of cate-cholamines in promotion of flowering in a short-day duckweed, Lemna paucicostata 6746[J]. Plant Physiol, 1987, 85(1):10-12.
    [12] KAUR-SAWHNEY R, TIBURCIO A F, GALSTON A W. Spermidine and flower-bud differentiation in thin-layer explants of tobacco[J]. Planta, 1988, 173(2):282-284. doi:10.1007/BF00403022.
    [13] LIU S H, ZANG X P, ZHANG X M, et al. Changes of endogenous hormone levels during the inflorescence differentiation in pineapple (Smooth Cayenne. cv)[J]. Chin J Trop Crops, 2010, 31(9):1487-1492. doi:10.3969/j.issn.1000-2561.2010.09.010. 刘胜辉, 臧小平, 张秀梅, 等. 乙烯利诱导菠萝[Ananas comosus (L.) Merril] 花芽分化过程与内源激素的关系[J]. 热带作物学报, 2010, 31(9):1487-1492. doi:10.3969/j.issn.1000-2561.2010.09.010.
    [14] ZHANG J. Review on Auxin signal transduction pathway and biolo-gical functions[J]. Life Sci Res, 2009, 13(3):272-277. doi:10.16605/j.cnki.1007-7847.2009.03.011. 张娟. 生长素信号转导途径及参与的生物学功能研究进展[J]. 生命科学研究, 2009, 13(3):272-277. doi:10.16605/j.cnki.1007-7847. 2009.03.011.
    [15] ZHOU L P, PAN C, WANG M X, et al. Progress on the mechanism of hormones regulating plant flower formation[J]. Hereditas, 2020, 42(8):739-751. doi:10.16288/j.yczz.20-014. 邹礼平, 潘铖, 王梦馨, 等. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8):739-751. doi:10.16288/j.yczz.20-014.
    [16] KE D S, WANG A G, LUO G H. The effect of activated oxygen during the production of endogenous ethylene induced by exogenous ethylene[J]. Acta Phytophysiol Sin, 1997, 23(1):67-72. 柯德森, 王爱国, 罗广华. 活性氧在外源乙烯诱导内源乙烯产生过程中的作用[J]. 植物生理学报, 1997, 23(1):67-72.
    [17] OGAWARA T, HIGASHI K, KAMADA H, et al. Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana[J]. J Plant Physiol, 2003, 160(11):1335-1340. doi:10.1078/0176-1617-01129.
    [18] DUKOVSKI D, BERNATZKY R, HAN S S. Flowering induction of Guzmania by ethylene[J]. Sci Hort, 2006, 110(1):104-108. doi:10. 1016/j.scienta.2006.05.004.
    [19] POGSON B J, DOWNS C G, DAVIES K M. Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest[J]. Plant Physiol, 1995, 108(2):651-657. doi:10.1104/pp. 108.2.651.
    [20] SUN S S, WEN X P, YANG F Y, et al. Cloning of ACC oxidase gene from Narcissus tazetta var. ‘Yunxiang’ and its transformation[J]. Acta Hort Sin, 2017, 44(7):1388-1396. doi:10.16420/j.issn.0513-353x.2016-0884. 孙申申, 温秀萍, 杨菲颖, 等. ‘云香’水仙ACC氧化酶基因克隆及遗传转化[J]. 园艺学报, 2017, 44(7):1388-1396. doi:10.16420/j. issn.0513-353x.2016-0884.
    [21] DOLGIKH V A, PUKHOVAYA E M, ZEMLYANSKAYA E V. Shaping ethylene response:The role of EIN3/EIL1 transcription factors[J]. Front Plant Sci, 2019, 10:1030. doi:10.3389/fpls.2019.01030.
    [22] XU J. Functional study of NFT1 and NEIN3 genes related to dormancy regulation in Narcissus tazetta var. chinensis[D]. Shanghai:East China Normal University, 2013:63-65. 许静. 中国水仙休眠调控相关基因NFT1NEIN3的功能研究[D]. 上海:华东师范大学, 2013:63-65.
    [23] LI Z Y, ZHANG X Q, ZHANG K, et al. Cloning and expressing analysis of EIN3 in Aechemia fasciata[J]. Mol Plant Breed, 2015, 13(1):139-144. 李志英, 张学全, 张鲲, 等. 蜻蜓凤梨中EIN3的克隆及其表达特性分析[J]. 分子植物育种, 2015, 13(1):139-144.
    [24] AN F Y, GUO H W. Molecular mechanism of ethylene signal trans-duction[J]. Chin Bull Bot, 2006, 23(5):531-542. doi:10.3969/j.issn. 1674-3466.2006.05.009. 安丰英, 郭红卫. 乙烯信号转导的分子机制[J]. 植物学通报, 2006, 23(5):531-542. doi:10.3969/j.issn.1674-3466.2006.05.009.
    [25] SONG Y, DOU L D, ZHANG H J. Molecular and genetic mechanisms of control of floral induction in higher plants[J]. Plant Physiol J, 2014, 50(10):1459-1468. doi:10.13592/j.cnki.ppj.2014.0270. 宋杨, 窦连登, 张红军. 高等植物成花诱导调控的分子和遗传机制[J]. 植物生理学报, 2014, 50(10):1459-1468. doi:10.13592/j.cnki.ppj. 2014.0270.
    [26] BAO S J, HUA C M, SHEN L S, et al. New insights into gibberellin signaling in regulating flowering in Arabidopsis[J]. J Integr Plant Biol, 2020, 62(1):118-131. doi:10.1111/jipb.12892.
    [27] WANG L N, LIU Q L. Phylogenetic tree and function analysis of inflorescence meristem identity gene TFL1[J]. China Biotechnol, 2008, 28(1):106-112. doi:10.3969/j.issn.1671-8135.2008.01.019. 王丽娜, 刘青林. 花序分生组织特性基因TFL1的系统发育及其功能分析[J]. 中国生物工程杂志, 2008, 28(1):106-112. doi:10.3969/j. issn.1671-8135.2008.01.019.
    [28] KARLBERG A, BAKO L, BHALERAO R P. Short day-mediated cessation of growth requires the downregulation of AINTEGUMEN-TALIKE1 transcription factor in hybrid aspen[J]. PLoS Genet, 2011, 7(11):e1002361. doi:10.1371/journal.pgen.1002361.
    [29] MUDUNKOTHGE J S, KRIZEK B A. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function[J]. Plant J, 2012, 71(1):108-121. doi:10.1111/j.1365-313X.2012.04975.x.
    [30] TAKAGI N, UEGUCHI C. Enhancement of meristem formation by bouquet-1, a mis-sense allele of the VERNALIZATION INDEPENDENCE 3 gene encoding a WD40 repeat protein in Arabidopsis thaliana[J]. Genes Cells, 2012, 17(12):982-993. doi:10.1111/gtc.12014.
    [31] CONG H Q. Expression characterization of flowering related genes after ethylene treatment in Aechmea fasciata and preliminary study on molecular mechanism of flower induction[D]. Haikou:Hainan University, 2012:87-92. 丛汉卿. 乙烯诱导蜻蜓凤梨开花相关基因表达分析及其催花分子机制的初步研究[D]. 海口:海南大学, 2012:87-92.
    [32] KANIA T, RUSSENBERGER D, PENG S, et al. Fpf1 promotes flowering in Arabidopsis[J]. Plant Cell, 1997, 9(8):1327-1338. doi:10.1105/tpc.9.8.1327.
    [33] MELZER S, KAMPMANN G, CHANDLER J, et al. FPF1 modulates the competence to flowering in Arabidopsis[J]. Plant J, 1999, 18(4):395-405. doi:10.1046/j.1365-313X.1999.00461.x.
    [34] WANG X Y, FAN S L, SONG M Z, et al. Upland cotton gene ghfpf1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana[J]. PLoS ONE, 2014, 9(3):e91869. doi:10. 1371/journal.pone.0091869.
    [35] MANDEL M A, GUSTAFSON-BROWN C, SAVIDGE B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360(6401):273-277. doi:10.1038/360273a0.
    [36] LU S J, WEI H, WANG Y, et al. Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.)[J]. Plant Mol Biol Rep, 2012, 30(6):1461-1469. doi:10.1007/s11105-012-0468-9.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

何炎森,李瑞美,李和平.乙烯诱导水仙成花相关代谢物和基因的筛选与分析[J].热带亚热带植物学报,2022,30(2):161~170

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 08,2021
  • Revised:July 05,2021
  • Online: March 30,2022
Article QR Code