Comparison of Chemical Traits between Drought-dead and Natural Litter Leaves
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    To understand the difference in chemical properties between drought-dead and natural litter leaves, the chemistry traits in leaves of five species in Yuanjiang Savanna Ecosystem Research Station, such as Bauhinia brachycarpa, Tarenna depauperate, Cipadessa baccifera, Polyalthia cerasoides and Rubus pungens, were studied. The results showed that the chemical characteristics of carbon and nutrients had great variation between drought-dead and natural litter leaves, and there were very significant differences among these tree species (P<0.001). Compared with natural litter leaves, drought-dead leaves had high dissolved organic carbon, C/N and magnesium, but the concentration of lignin, hemicellulose and nitrogen was low. Furthermore, the chemical traits of drought-dead leaves had positive correlation with nature litter leaves, such as the concentration of carbon (R2=0.56,P<0.01), cellulose (R2=0.52, P<0.01), hemicellulose (R2=0.85, P<0.001), tannin (R2=0.99,P<0.001), lignin/N (R2=0.60,P<0.01), C/N (R2=0.64,P<0.001) and nitrogen (R2=0.85, P<0.001). Therefore, according to the chemical properties of natural litters, the chemical properties of drought-dead leaves under extreme drought conditions could be predicted in the future.

    Reference
    [1] LIN J J, ZHU B, CHENG W X. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon[J]. Glob Change Biol, 2015, 21(12):4602-4612. doi:10.1111/gcb.13071.
    [2] AVERILL C, HAWKES C V. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecol Lett, 2016, 19(8):937-947. doi:10.1111/ele.12631.
    [3] FANG Y Y, NAZARIES L, SINGH B K, et al. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils[J]. Glob Change Biol, 2018, 24(7):2775-2790. doi:10.1111/gcb.14154.
    [4] HUANG S D, HUANG Y R, GAO W, et al. Dynamics of litterfall and nutrient return in three typical forests of Wuyi Mountain along altitudinal gradient[J]. J Trop Subtrop Bot, 2020, 28(4):394-402. doi:10.11926/jtsb.4146. 黄石德, 黄雍容, 高伟, 等. 沿海拔梯度武夷山3种典型森林凋落物及养分归还动态[J]. 热带亚热带植物学报, 2020, 28(4):394-402. doi:10.11926/jtsb.4146.
    [5] XU Y X, WANG Z C, ZHU W K, et al. Litterfall and nutrient cycling of eucalyptus plantation with different ages on Leizhou peninsula[J]. J Trop Subtrop Bot, 2019, 27(4):359-366. doi:10.11926/jtsb.3986. 许宇星, 王志超, 竹万宽, 等. 雷州半岛桉树人工林凋落物量和养分循环研究[J]. 热带亚热带植物学报, 2019, 27(4):359-366. doi:10.11926/jtsb.3986.
    [6] MAKKONEN M, BERG M P, HANDA I T, et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[J]. Ecol Lett, 2012, 15(9):1033-1041. doi:10.1111/j.1461-0248.2012.01826.x.
    [7] SUSEELA V, THARAYIL N. Decoupling the direct and indirect effects of climate on plant litter decomposition:Accounting for stress-induced modifications in plant chemistry[J]. Glob Change Biol, 2018, 24(4):1428-1451. doi:10.1111/gcb.13923.
    [8] AERTS R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:A triangular relationship[J]. Oikos, 1997, 79(3):439-449. doi:10.2307/3546886.
    [9] ZHOU G Y, GUAN L L, WEI X H, et al. Factors influencing leaf litter decomposition:An intersite decomposition experiment across China[J]. Plant Soil, 2008, 311(1-2):61-72. doi:10.1007/s11104-008-9658-5.
    [10] CORNWELL W K, CORNELISSEN J H C, AMATANGELO K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecol Lett, 2008, 11(10):1065-1071. doi:10.1111/j.1461-0248.2008.01219.x.
    [11] BHATNAGAR J M, PEAY K G, TRESEDER K K. Litter chemistry influences decomposition through activity of specific microbial func-tional guilds[J]. Ecol Monogr, 2018, 88(3):429-444. doi:10.1002/ecm.1303.
    [12] MELILLO J M, ABER J D, MURATORE J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3):621-626. doi:10.2307/1936780.
    [13] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56. doi:10.1038/nature10386.
    [14] ZHANG D Q, HUI D F, LUO Y Q, et al. Rates of litter decomposition in terrestrial ecosystems:Global patterns and controlling factors[J]. J Plant Ecol, 2008, 1(2):85-93. doi:10.1093/jpe/rtn002.
    [15] PAUDEL E, DOSSA G G O, DE Blécourt M, et al. Quantifying the factors affecting leaf litter decomposition across a tropical forest distur-bance gradient[J]. Ecosphere, 2015, 6(12):1-20. doi:10.1890/ES15-00112.1.
    [16] YU G C, ZHAO H B, CHEN J, et al. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues[J]. Sci Total Environ, 2020, 737:139708. doi:10.1016/j.scitotenv.2020.139708.
    [17] WU Z M, LI Y D, ZHOU G Y, et al. Abnormal litterfall and its ecological significance[J]. Sci Silv Sin, 2008, 44(11):28-31. doi:10. 3321/j.issn:1001-7488.2008.11.006. 吴仲民, 李意德, 周光益, 等. "非正常凋落物"及其生态学意义[J]. 林业科学, 2008, 44(11):28-31. doi:10.3321/j.issn:1001-7488.2008.11.006.
    [18] CAO K F, CHANG J. The ecological effects of an unusual climatic disaster:The destruction to forest ecosystems by the extremely heavy glaze and snow storms occurred in early 2008 in southern China[J]. Chin J Plant Ecol, 2010, 34(2):123-124. doi:10.3773/j.issn.1005-264x. 2010.02.002. 曹坤芳, 常杰. 突发气象灾害的生态效应:2008年中国南方特大冰雪灾害对森林生态系统的破坏[J]. 植物生态学报, 2010, 34(2):123-124. doi:10.3773/j.issn.1005-264x.2010.02.002.
    [19] GUO S H, XUE L. Effects of ice-snow damage on forests[J]. Acta Ecol Sin, 2012, 32(16):5242-5253. doi:10.5846/stxb201201120072. 郭淑红, 薛立. 冰雪灾害对森林的影响[J]. 生态学报, 2012, 32(16):5242-5253. doi:10.5846/stxb201201120072.
    [20] LIU L Y, XUE L. Effects of ice-snow damage on forest soils properties[J]. World For Res, 2018, 31(6):10-15. doi:10.13348/j.cnki.sjlyyj. 2018.0069.y. 刘落鱼, 薛立. 冰雪灾害对森林土壤性质的影响[J]. 世界林业研究, 2018, 31(6):10-15. doi:10.13348/j.cnki.sjlyyj.2018.0069.y.
    [21] DUAN H L, WU J P, LIU W F, et al. Water relations and carbon dynamics under drought stress and the mechanisms of drought-induced tree mortality[J]. Sci Silv Sin, 2015, 51(11):113-120. doi:10.11707/j. 1001-7488.20151115. 段洪浪, 吴建平, 刘文飞, 等. 干旱胁迫下树木的碳水过程以及干旱死亡机理[J]. 林业科学, 2015, 51(11):113-120. doi:10.11707/j. 1001-7488.20151115.
    [22] MALIK A A, SWENSON T, WEIHE C, et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production[J]. ISME J, 2020, 14(9):2236-2247. doi:10.1038/s41396-020-0683-6.
    [23] ZHOU G Y, LI L, WU A C. Effect of drought on forest ecosystem under warming climate[J]. J Nanjing Univ Inf Sci Technol, 2020, 12(1):81-88. doi:10.13878/j.cnki.jnuist.2020.01.010. 周国逸, 李琳, 吴安驰. 气候变暖下干旱对森林生态系统的影响[J]. 南京信息工程大学学报, 2020, 12(1):81-88. doi:10.13878/j. cnki.jnuist.2020.01.010.
    [24] YE L H, HUANG X L, XUE L. Effects of drought on leaf traits and drought-resistant physiology of trees[J]. World For Res, 2014, 27(1):29-34. doi:10.13348/j.cnki.sjlyyj.2014.01.006. 叶龙华, 黄香兰, 薛立. 干旱对树木叶片性状及抗旱生理的影响[J]. 世界林业研究, 2014, 27(1):29-34. doi:10.13348/j.cnki.sjlyyj. 2014.01.006.
    [25] LIU Y B, ZHANG T G, LI X R, et al. Protective mechanism of desiccation tolerance in Reaumuria soongorica:Leaf abscission and sucrose accumulation in the stem[J]. Sci China Ser C, 2007, 50(1):15-21. doi:10.3321/j.issn:1006-9259.2006.04.005. 刘玉冰, 张腾国, 李新荣, 等. 红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J]. 中国科学C辑生命科学, 2006, 36(4):328-333. doi:10.3321/j.issn:1006-9259.2006. 04.005.
    [26] HÄTTENSCHWILER S, AESCHLIMANN B, COUTEAUX M M, et al. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community[J]. New Phytol, 2008, 179(1):165-175. doi:10.1111/j.1469-8137.2008.02438.x.
    [27] XIE C. Impact of nitrogen addition on decomposition of leaf litter and fresh leaves in a semiarid grassland ecosystem[D]. Lanzhou:Lanzhou University, 2017:15-17. 谢婵. 氮添加对黄土高原半干旱区两种植物的新鲜和自然凋落叶片分解的影响[D]. 兰州:兰州大学, 2017:15-17.
    [28] BAKKER M A, CARREÑO-ROCABADO G, POORTER L. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types[J]. Funct Ecol, 2011, 25(3):473-483. doi:10.1111/j.1365-2435.2010.01802.x.
    [29] SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass[R]. Golden:National Renewable Energy Laboratory, 2008.
    [30] HAGERMAN A E. The Tannin Handbook[M]. Oxford:Miami University, 2011.
    [31] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geosci, 2015, 8(10):776-779. doi:10.1038/ngeo2520.
    [32] AN Y Y, LIANG Z S. Staged strategy of plants in response to drought stress[J]. Chin J Appl Ecol, 2012, 23(10):2907-2915. doi:10.13287/j. 1001-9332.2012.0403. 安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23(10):2907-2915. doi:10.13287/j.1001-9332.2012.0403.
    [33] LI R S, ZHANG Y Z, YU D, et al. The decomposition of green leaf litter is less temperature sensitive than that of senescent leaf litter:An incubation study[J]. Geoderma, 2021, 381:114691. doi:10.1016/j. geoderma.2020.114691.
    [34] ZHANG J L, HAO G Y, CAO K F. Phenology of woody species in Yuanjiang Dry-hot Valley in Yunnan Province[J]. Wuhan Bot Res, 2009, 27(1):76-82. doi:10.3969/j.issn.2095-0837.2009.01.012. 张教林, 郝广友, 曹坤芳. 云南元江干热河谷木本植物的物候[J]. 武汉植物学研究, 2009, 27(1):76-82. doi:10.3969/j.issn.2095-0837. 2009.01.012.
    [35] CHOMEL M, GUITTONNY-LARCHEVÊQUE M, FERNANDEZ C, et al. Plant secondary metabolites:A key driver of litter decomposition and soil nutrient cycling[J]. J Ecol, 2016, 104(6):1527-1541. doi:10. 1111/1365-2745.12644.
    [36] FU Y W, TIAN D S, NIU S L, et al. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. J Beijing For Univ, 2020, 42(5):115-123. doi:10. 12171/j.1000-1522.20190469. 符义稳, 田大栓, 牛书丽, 等. 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响[J]. 北京林业大学学报, 2020, 42(5):115-123. doi:10.12171/j.1000-1522.20190469.
    [37] LUO W T, ZUO X A, GRIFFIN-NOLAN R J, et al. Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands[J]. Plant Soil, 2019, 442(1/2):343-353. doi:10.1007/s11104-019-04176-w.
    [38] SU W, LIU J, WANG B, et al. Research progress on the HAK function of plant high affinity potassium ion transporter[J]. Biotechnol Bull, 2020, 36(8):144-152. doi:10.13560/j.cnki.biotech.bull.1985.2020-0152. 苏文, 刘敬, 王冰, 等. 植物高亲和钾离子转运蛋白HAK功能研究进展[J]. 生物技术通报, 2020, 36(8):144-152. doi:10.13560/j.cnki. biotech.bull.1985.2020-0152.
    [39] KARABOURNIOTIS G, HORNER H T, BRESTA P, et al. New insights into the functions of carbon-calcium inclusions in plants[J]. New Phytol, 2020, 228(3):845-854. doi:10.1111/nph.16763.
    [40] RAO L S, WANG P, ZHANG J J, et al. Mn-SOD gene expression in Chinese fir under different stress[J]. J NE For Univ, 2018, 46(6):19-22. doi:10.13759/j.cnki.dlxb.2018.06.004. 饶丽莎, 王培, 张家君, 等. 不同逆境胁迫下杉木Mn-SOD基因表达[J]. 东北林业大学学报, 2018, 46(6):19-22. doi:10.13759/j.cnki. dlxb.2018.06.004.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

巢林,李忠国,杨大新,王爱华,张建兵,胡宝清,刘艳艳.干旱死亡叶片与自然凋落叶化学性质对比研究[J].热带亚热带植物学报,2022,30(1):79~87

Copy
Share
Article Metrics
  • Abstract:356
  • PDF: 527
  • HTML: 377
  • Cited by: 0
History
  • Received:March 01,2021
  • Revised:April 19,2021
  • Online: January 27,2022
Article QR Code