Spatial Distribution Pattern and Association of Sapindus saponaria in Fengshui Forest, Leizhou Peninsula
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [54]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    To explore the application of Sapindus saponaria in ecological restoration and urban garden, a 1 hm2 plot was set up in S. saponaria Fengshui Forest in Zorong Village, Longmen Town, Leizhou City, Guangdong Province, the species composition of community was analyzed, and its spatial distribution pattern and intraspecific correlation were also analyzed using a point pattern analysis with complete spatial randomness and heterogeneous poisson. The results showed that there were 3 585 individuals of 73 species, belonging to 60 genera and 28 families with diameter at the breast height (DBH) ≥ 1 cm. The proportion of the monogeneric family, single-species family and monotypic genus were obviously higher than other types, followed by the oligogenera families, oligospecies families and oligotypic genera. The spatial distribution patterns of S. saponaria showed an alternating phenomenon of aggregation, random distribution and uniform distribution at 0-25 m scales. At a small scale, the distribution of saplings was aggregated, and that of adults was uniform. With the increment of spatial scale, trees in three age classes were mainly randomly distributed. The saplings and middle-aged trees had a weak positive association at 0-25 m scales, while it was negatively associated between saplings and adult trees. The association between middle-aged and adult trees showed periodic changes, from no significant association (0-4.5 m scale) to positive association (4.5-10.0 m scale) to no association (10.0-25.0 m scale). As a consequence of neighbor competition and density dependence, the spatial distribution pattern of S. saponaria changed from aggregated distribution at small scale to random distribution at large scale. The coexisting proportion of saplings and middle aged trees was high, and that of middle-aged and adult trees at small scales also high, while saplings and adult trees are relatively independent. Therefore, S. saponaria could be cultivated in small aggregations and scattered in large scales for the ecological restoration and urban garden construction in Leizhou Peninsula.

    Reference
    [1] LIU Y Y, LI F R, JIN G Z. Spatial patterns and associations of four species in an old-growth temperate forest[J]. J Plant Interact, 2014, 9(1):745-753. doi:10.1080/17429145.2014.925146.
    [2] ZHANG Z H, HU G, ZHU J D, et al. Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China[J]. Ecol Res, 2010, 25(6):1151-1160. doi:10.1007/s11284-010-0740-0.
    [3] LIU Y Y, JIN G Z. Spatial point pattern analysis for coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains, China[J]. Acta Ecol Sin, 2010, 30(22):6072-6081. doi:10. 3969/j.issn.1674-6805.2013.27.039. 刘妍妍, 金光泽. 小兴安岭阔叶红松林粗木质残体空间分布的点格局分析[J]. 生态学报, 2010, 30(22):6072-6081. doi:10.3969/j.issn. 1674-6805.2013.27.039.
    [4] JIA G D, YU X X, DENG W P, et al. Spatial pattern analysis on individuals of Tilia tuan Szyszyl. at different altitudes in typical watershed of Beijing mountainous area[J]. Ecol Environ Sci, 2011, 20(S1):996-1002. doi:10.16258/j.cnki.1674-5906.2011.z1.001. 贾国栋, 余新晓, 邓文平, 等. 北京山区典型流域不同海拔椴树种群的空间点格局分析[J]. 生态环境学报, 2011, 20(S1):996-1002. doi:10.16258/j.cnki.1674-5906.2011.z1.001.
    [5] ZHANG M T, KANG X G, MENG J H, et al. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains[J]. J Mt Sci, 2015, 12(3):659-670. doi:10.1007/s11629-013-2795-1.
    [6] XIA S J, LIU M X, ZHU G, et al. Spatial distribution pattern and association between desert plant of Reaumuria songarica and Stipa sareptana var. krylovii population[J]. Acta Bot Boreali-Occid Sin, 2018, 38(11):2129-2137. doi:10.7606/j.issn.1000-4025.2018.11.2129. 夏素娟, 刘旻霞, 朱恭, 等. 荒漠植物红砂与西北针茅种群的空间格局及其关联性[J]. 西北植物学报, 2018, 38(11):2129-2137. doi:10.7606/j.issn.1000-4025.2018.11.2129.
    [7] LI D L, JIANG H, WANG H, et al. Population structure and spatial distribution pattern of Liquidambar formosana in maple tree bay of Lianyungang[J]. Ecol Environ Sci, 2020, 29(1):49-58. doi:10.16258/j.cnki.1674-5906.2020.01.006. 李冬林, 江浩, 王火, 等. 连云港市枫树湾景区枫香种群结构与分布格局[J]. 生态环境学报, 2020, 29(1):49-58. doi:10.16258/j.cnki. 1674-5906.2020.01.006.
    [8] CHEN B X, COGGINS C, MINOR J, et al. Fengshui forests and village landscapes in China:Geographic extent, socioecological signi-ficance, and conservation prospects[J]. Urban For Urban Gree, 2018, 31:79-92. doi:10.1016/j.ufug.2017.12.011.
    [9] FAN Z Y. Preliminary analysis on promotion and application of energy plantations of Sapindus mukorossi in areas to the south of the Huaihe River[J]. Anhui For Sci Technol, 2017, 43(2):51-53. doi:10.3969/j. issn.2095-0152.2017.02.014. 范子燕. 浅析无患子能源林及其产业化在淮河以南区域的推广与应用[J]. 安徽林业科技, 2017, 43(2):51-53. doi:10.3969/j.issn. 2095-0152.2017.02.014.
    [10] HUANG S, PAN W M. Excellent landscaping trees Sapindus muku-rossi[J]. Garden, 2004(9):42. doi:10.3969/j.issn.1000-0283.2004.09. 026. 黄顺, 潘文明. 优良造景树——无患子[J]. 园林, 2004(9):42. doi:10.3969/j.issn.1000-0283.2004.09.026.
    [11] FAN H H, TANG X H, SHU T, et al. Feasibility analysis of developing raw material forest of Sapindus mukurossi in Shunchang[J]. Prot For Sci Technol, 2014(6):93-95. doi:10.13601/j.issn.1005-5215.2014.06.039. 范辉华, 汤行昊,舒婷, 等. 顺昌发展无患子原料林可行性分析[J]. 防护林科技, 2014(6):93-95. doi:10.13601/j.issn.1005-5215.2014.06. 039.
    [12] YAN R, QIAN C. Physiological response of Sapindus seedlings to water stress[J]. J SW Univ (Nat Sci), 2014, 36(4):29-33. doi:10. 13718/j.cnki.xdzk.2014.04.005. 闫瑞, 钱春. 无患子幼苗对水分胁迫的生理响应[J]. 西南大学学报(自然科学版), 2014, 36(4):29-33. doi:10.13718/j.cnki.xdzk.2014. 04.005.
    [13] ZENG Q Q, ZHENG L B, HUANG Y C, et al. Herbal textual and research progress of Sapindus mukorossi[J]. For Environ Sci, 2018, 34(4):168-175. doi:10.3969/j.issn.1006-4427.2018.04.028. 曾庆钱, 郑良豹, 黄意成, 等. 无患子的本草考证及研究进展[J]. 林业与环境科学, 2018, 34(4):168-175. doi:10.3969/j.issn.1006-4427. 2018.04.028.
    [14] YANG Y, LIU X L, ZHANG M, et al. Preparation and performance evaluation of soapberry handmade soap[J]. Guangzhou Chem Ind, 2019, 47(15):92-95. doi:10.3969/j.issn.1001-9677.2019.15.036. 杨莹, 柳小兰, 张明, 等. 无患子手工皂的研制与性能评价[J]. 广州化工, 2019, 47(15):92-95. doi:10.3969/j.issn.1001-9677.2019. 15.036.
    [15] LI F S, ZHANG Z, LI B. Variation characteristics of rainstorm climate in Zhanjiang from 1951 to 2011[J]. Guangdong Meteor, 2012, 34(6):35-37. doi:10.3969/j.issn.1007-6190.2012.06.010. 李福胜, 张仲, 李斌. 湛江市1951—2011年暴雨气候的变化特征[J]. 广东气象, 2012, 34(6):35-37. doi:10.3969/j.issn.1007-6190. 2012.06.010.
    [16] TAN M Z. Study on restoration methods of tropical monsoon forest in Leizhou Peninsula[J]. Xiangcun Keji, 2017(12):35-36. doi:10.19345/j.cnki.1674-7909.2017.12.013. 谭铭智. 雷州半岛热带季雨林修复方法研究[J]. 乡村科技, 2017(12):35-36. doi:10.19345/j.cnki.1674-7909.2017.12.013.
    [17] TANG W K, WANG Y, DONG J, et al. Early-middle Holocene paleo-environmental evolution revealed by a lacustrine sediment sequence in Leizhou Peninsula[J]. Geol Bull China, 2017, 36(9):1625-1634. doi:10.3969/j.issn.1671-2552.2017.09.014. 汤文坤, 王永, 董进, 等. 雷州半岛南部湖相沉积揭示的全新世早中期气候环境演变[J]. 地质通报, 2017, 36(9):1625-1634. doi:10. 3969/j.issn.1671-2552.2017.09.014.
    [18] LI N, CHEN J, LI R T. Screening study of native gardening plant based on new naturalism:Taking Leizhou Peninsula as an example[J]. Nanfang For Sci, 2019, 47(2):30-34. doi:10.16259/j.cnki.36-1342/s. 2019.02.007. 李楠, 陈杰, 李润唐. 基于新自然主义条件下乡土园林植物的筛选研究——以雷州半岛为例[J]. 南方林业科学, 2019, 47(2):30-34. doi:10.16259/j.cnki.36-1342/s.2019.02.007.
    [19] LAN J J, FEI W Q, LUO J, et al. Medicinal seed plants flora in Shergyla Mountains, Tibet[J]. Guihaia, 2018, 38(4):411-419. doi:10.11931/guihaia.gxzw201703030. 拦继酒, 费文群, 罗建, 等. 西藏色季拉山药用种子植物区系研究[J]. 广西植物, 2018, 38(4):411-419. doi:10.11931/guihaia.gxzw201703030.
    [20] GUO Y, KANG N, DONG H, et al. Species composition and spatial distribution pattern of Ormosia boluoensis with extremely small population[J]. J Trop Subtrop Bot, 2020, 28(3):301-309. doi:10. 11926/jtsb.4151. 郭韵, 康宁, 董辉, 等. 极小种群博罗红豆的群落物种组成和空间分布格局[J]. 热带亚热带植物学报, 2020, 28(3):301-309. doi:10. 11926/jtsb.4151.
    [21] WU J X, ZHANG X M, LI L, et al. Characteristic and dynamics analysis of Populus euphratica populations at the middle reaches of the Tarim River[J]. Arid Zone Res, 2010, 27(2):242-248. doi:10.13866/j. azr.2010.02.004. 吴俊侠, 张希明, 李利, 等. 塔里木河干流中游胡杨种群特征与动态分析[J]. 干旱区研究, 2010, 27(2):242-248. doi:10.13866/j.azr. 2010.02.004.
    [22] YANG L. The characteristics and afforestation technology of Sapindus saponaria[J]. Modern Agric Sci Technol, 2019(9):148. doi:10.3969/j. issn.1007-5739.2019.09.091. 杨丽. 无患子的特征特性与造林技术[J]. 现代农业科技, 2019(9):148. doi:10.3969/j.issn.1007-5739.2019.09.091.
    [23] WANG X. Study on growth models of four deciduous broad-leaved trees in Hefei[D]. Anhui:Anhui Agricultural University, 2010:24-29. doi:10.7666/d.y1735305. 王曦. 合肥市四种落叶阔叶树种生长模型的研究[D]. 安徽:安徽农业大学, 2010:24-29. doi:10.7666/d.y1735305.
    [24] ZHANG J T. Quantitative Ecology[M]. 2nd ed. Beijing:Science Press, 2011:359-360. 张金屯. 数量生态学[M]. 第2版. 北京:科学出版社, 2011:359-360.
    [25] ZHANG J T. Analysis of spatial point pattern for plant species[J]. Acta Phytoecol Sin, 1998, 22(4):344-349. 张金屯. 植物种群空间分布的点格局分析[J]. 植物生态学报, 1998, 22(4):344-349.
    [26] TU H R, LI J F, LIU R H, et al. Spatial distribution patterns and asso-ciation of Loropetalum chinense population in karst hills of Guilin, southwest China[J]. Chin J Appl Ecol, 2019, 30(8):2621-2630. doi:10.13287/j.1001-9332.201908.016. 涂洪润, 李娇凤, 刘润红, 等. 桂林岩溶石山檵木种群空间格局及其关联性[J]. 应用生态学报, 2019, 30(8):2621-2630. doi:10.13287/j. 1001-9332.201908.016.
    [27] YANG H, LI Y L, SHEN L, et al. Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China[J]. Acta Ecol Sin, 2014, 34(24):7311-7319. doi:10.5846/stxb201303150432. 杨华, 李艳丽, 沈林, 等. 长白山云冷杉林幼苗幼树空间分布格局及其更新特征[J]. 生态学报, 2014, 34(24):7311-7319. doi:10. 5846/stxb201303150432.
    [28] HE Z L, XU H, QIN X S, et al. Spatial distribution patterns and association of two apocynaceae plants in the tropical mountain rain-forests of Jianfengling, Hainan Island, China[J]. Biodiv Sci, 2017, 25(10):1065-1074. doi:10.17520/biods.2017095. 何增丽, 许涵, 秦新生, 等. 海南尖峰岭热带山地雨林2种夹竹桃科植物的空间分布格局与关联性[J]. 生物多样性, 2017, 25(10):1065-1074. doi:10.17520/biods.2017095.
    [29] YANG J, ZHONG Q J, WANG C Y, et al. Spatial pattern analysis of Quercus pannosa population at different altitudes in Yunnan Yaoshan[J]. Ecol Sci, 2019, 38(5):111-118. doi:10.14108/j.cnki.1008-8873. 2019.05.015. 杨靖, 钟乾娟, 王崇云, 等. 云南药山黄背栎种群不同海拔空间格局分析[J]. 生态科学, 2019, 38(5):111-118. doi:10.14108/j.cnki. 1008-8873.2019.05.015.
    [30] YAN D F, HE W, MA R T, et al. Effects of forest thinning on the spatial distribution patterns of Quercus variabilis population[J]. Ecol Environ Sci, 2020, 29(3):429-437. doi:10.16258/j.cnki.1674-5906.2020.03.001. 闫东锋, 贺文, 马瑞婷, 等. 抚育间伐对栓皮栎种群空间分布格局的影响[J]. 生态环境学报, 2020, 29(3):429-437. doi:10.16258/j. cnki.1674-5906.2020.03.001.
    [31] LIANG S, XU H, LIN J Y, et al. Spatial distribution pattern of the dominant species Gironniera subaequalis in tropical montane rain-forest of Jianfengling, Hainan Island, China[J]. J Plant Ecol, 2014, 38(12):1273-1282. doi:10.3724/SP.J.1258.2014.00122. 梁爽, 许涵, 林家怡, 等. 尖峰岭热带山地雨林优势树种白颜树空间分布格局[J]. 植物生态学报, 2014, 38(12):1273-1282. doi:10. 3724/SP.J.1258.2014.00122.
    [32] HUANG Y F, DING Y, ZANG R G, et al. Spatial pattern of trees in tropical lowland rain forest in Bawangling of Hainan Island, China[J]. Chin J Plant Ecol, 2012, 36(4):269-280. doi:10.3724/SP.J.1258.2012. 00269. 黄运峰, 丁易, 臧润国, 等. 海南岛霸王岭热带低地雨林树木的空间格局[J]. 植物生态学报, 2012, 36(4):269-280. doi:10.3724/SP.J. 1258.2012.00269.
    [33] GUO Y L, WANG B, XIANG W S, et al. Spatial distribution of tree species in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiv Sci, 2015, 23(2):183-191. doi:10.17520/biods.2014126. 郭屹立, 王斌, 向悟生, 等. 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析[J]. 生物多样性, 2015, 23(2):183-191. doi:10.17520/biods.2014126.
    [34] ZHU Y, MI X C, MA K P. A mechanism of plant species coexistence:the negative density-dependent hypothesis[J]. Biodiv Sci, 2009, 17(6):594-604. doi:10.3724/SP.J.1003.2009.09183. 祝燕, 米湘成, 马克平. 植物群落物种共存机制:负密度制约假说[J]. 生物多样性, 2009, 17(6):594-604. doi:10.3724/SP.J.1003.2009. 09183.
    [35] PU X C, Umañab M N, JIN G Z. Trait-mediated neighbor effects on plant survival depend on life stages and stage-specific traits in a tem-perate forest[J]. For Ecol Manage, 2020, 472:118250. doi:10.1016/j. foreco.2020.118250.
    [36] ZANG L P, XU H, LI Y D, et al. Conspecific negative density dependence of trees varies with plant functional traits and environ-mental conditions across scales in a 60-ha tropical rainforest dynamics plot[J]. Biotropica, 2021, 53(2):693-702. doi:10.1111/btp.12910.
    [37] COMITA L S, HUBBELL S P. Local neighborhood and species' shade tolerance influence survival in a diverse seedling bank[J]. Ecology, 2009, 90(2):328-334. doi:10.1890/08-0451.1.
    [38] KEMBEL S W, DALE M R T. Within-stand spatial structure and relation of boreal canopy and understorey vegetation[J]. J Veg Sci, 2006, 17(6):783-790. doi:10.1111/j.1654-1103.2006.tb02501.x.
    [39] HUBBELL S P, AHUMADA J A, CONDIT R, et al. Local neigh-borhood effects on long-term survival of individual trees in a Neo-tropical forest[J]. Ecol Res, 2001, 16(5):859-875. doi:10.1046/j. 1440-1703.2001.00445.x.
    [40] ZHANG Z, LIU P, DING Y, et al. Distribution patterns of Picea schrenkiana var. tianshanica populations at different developmental stages in the western Tianshan Mountain, northwestern China[J]. J Beijing For Univ, 2010, 32(3):75-79. doi:10.13332/j.1000-1522.2010. 03.020. 张震, 刘萍, 丁易, 等. 天山云杉林不同发育阶段种群分布格局研究[J]. 北京林业大学学报, 2010, 32(3):75-79. doi:10.13332/j.1000-1522.2010.03.020.
    [41] LIU X J, REN S Y, LI L X, et al. Detecting density dependence on tree survival in a deciduous broad-leaved forest in Baotianman national nature reserve[J]. Biodiv Sci, 2016, 24(6):639-648. doi:10.17520/biods.2015134. 刘晓静, 任思远, 李鹿鑫, 等. 宝天曼国家级自然保护区落叶阔叶林密度制约效应对树木存活的影响[J]. 生物多样性, 2016, 24(6):639-648. doi:10.17520/biods.2015134.
    [42] URIARTE M, CONDIT R, CANHAM C D, et al. A spatially explicit model of sapling growth in a tropical forest:Does the identity of neighbours matter?[J]. J Ecol, 2004, 92(2):348-360. doi:10.1111/j. 0022-0477.2004.00867.x.
    [43] WRIGHT J S. Plant diversity in tropical forests:A review of mecha-nisms of species coexistence[J]. Oecologia, 2002, 130(1):1-14. doi:10.1007/s004420100809.
    [44] JANZEN D H. Herbivores and the number of tree species in tropical forests[J]. Amer Nat, 1970, 104(940):501-528. doi:10.1086/282687.
    [45] MURRELL D J. On the emergent spatial structure of size-structured populations:When does self-thinning lead to a reduction in clustering?[J]. J Ecol, 2009, 97(2):256-266. doi:10.1111/j.1365-2745.2008.01475.x.
    [46] LI L, CHEN J H, REN H B, et al. Spatial patterns of Castanopsis eyrei and Schima superba in mid-subtropical broad-leaved evergreen forest in Gutianshan National Reserve, China[J]. J Plant Ecol, 2010, 34(3):241-252. doi:10.3773/j.issn.1005-264x.2010.03.001. 李立, 陈建华, 任海保, 等. 古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J]. 植物生态学报, 2010, 34(3):241-252. doi:10. 3773/j.issn.1005-264x.2010.03.001.
    [47] JIN S F, XU L D, LIAO X L, et al. An analysis on the spatial distri-bution pattern and interspecies correlation of natural secondary forest of Cinuomomum camphor[J]. J Wuyi Univ, 2019, 38(3):40-46. doi:10.14155/j.cnki.35-1293/g4.2019.03.008. 靳少非, 许鲁东, 廖晓丽, 等. 香樟天然次生林种群空间分布格局及其关联性分析[J]. 武夷学院学报, 2019, 38(3):40-46. doi:10. 14155/j.cnki.35-1293/g4.2019.03.008.
    [48] NGUYEN H H, URIA-DIEZ J, WIEGAND K. Spatial distribution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam[J]. J Veg Sci, 2016, 27(2):318-327. doi:10. 1111/jvs.12361.
    [49] CHEN Y, WANG T, LI P K, et al. Community characteristics and spatial distribution of dominant tree species in a deciduous broad-leaved forest of Muzhaling, Henan, China[J]. Chin J Plant Ecol, 2016, 40(11):1179-1188. doi:10.17521/cjpe.2016.0192. 陈云, 王婷, 李培坤, 等. 河南木札岭温带落叶阔叶林群落特征及主要乔木空间分布格局[J]. 植物生态学报, 2016, 40(11):1179-1188. doi:10.17521/cjpe.2016.0192.
    [50] JOHN R, DALLING J W, HARMS K E, et al. Soil nutrients influence spatial distributions of tropical tree species[J]. Proc Natl Acad Sci USA, 2007, 104(3):864-869. doi:10.1073/pnas.0604666104.
    [51] HAMILL D N, WRIGHT S J. Testing the dispersion of juveniles relative to adults:A new analytic method[J]. Ecology, 1986, 67(4):952-957. doi:10.2307/1939817.
    [52] HUANG Y F. Study on dynamics of tree species composition and spatial pattern in the tropical lowland rainforest on Hainan Island, China[D]. Beijing:Chinese Academy of Forestry, 2013:4-6. doi:10. 7666/d.Y2405265. 黄运峰. 海南岛热带低地雨林树种组成与格局动态[D]. 北京:中国林业科学研究院, 2013:4-6. doi:10.7666/d.Y2405265.
    [53] BAN Y, XU H C. Experimental studies on fate of Larix gmelini seeds in the soil in old-growth larch stands[J]. Acta Ecol Sin, 1996, 16(5):541-547. 班勇, 徐化成. 原始老龄林内兴安落叶松种子命运的试验研究[J]. 生态学报, 1996, 16(5):541-547.
    [54] RAZAFINDRATSIMA O H, DUNHAM A E. Frugivores bias seed-adult tree associations through nonrandom seed dispersal:A phylo-genetic approach[J]. Ecology, 2016, 97(8):2094-2102. doi:10.1002/ecy.1434.
    Cited by
Get Citation

谢锭淇,黄锐洲,许涵,蔡继醇,唐光大.雷州半岛风水林中无患子的空间分布格局与空间关联性[J].热带亚热带植物学报,2022,30(1):31~40

Copy
Share
Article Metrics
  • Abstract:316
  • PDF: 537
  • HTML: 520
  • Cited by: 0
History
  • Received:March 01,2021
  • Revised:May 24,2021
  • Online: January 27,2022
Article QR Code