Leaf Morphology, Photosynthetic Characteristics and Branch Resistance Responding to Long-term Wind Stress of Coastal Shelterbelt Species
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the effects of wind stress on coastal shelterbelt tree species, leaf morphology, photosynthetic characteristics and branch tensile resistance to long-term wind stress were studied in six coastal shelterbelt tree species, including Ligustrum lucidum, Sapindus mukorossi, Machilus thunbergii, Koelreuteria bipinnata,Sapium sebiferum, and Quercus virginiana with ages of 8-10 years. The results showed that the leaf length and leaf area of L. lucidum, S. mukorossi,M. thunbergii, K. bipinnata and Q. virginiana significantly reduced under long-term wind stress, and also did the leaf width and leaf fractal index of K. bipinnata and L. lucidum. Meanwhile, the net photosynthetic rate of all six tree species had significant inhibition for 18%-47% under long-term wind stress, and the water use efficiency of S. mukorossi, K. bipinnata and Q. virginiana decreased, but that of L. lucidum, M. thunbergii and S. sebiferum had no significant effect. Under long-term wind stress, the maximum branch load and elastic modulus of S. mukorossi, M. thunbergii and K. bipinnata significantly increased, and the positive correlation with branch diameter were further enhanced. Therefore, long-term wind stress reduced the photosynthetic capacities of coastal shelterbelt species, but trees developed adaptive strategies, such as reducing leaf area, and tolerant strategies like enhancing branch resistance to reimburse this physiological deficit. Moreover, concerning the selection and collocation of tree species for the construction and restoration of coastal shelterbelts, priority can be given to L. lucidum, M. thunbergii and S. sebiferum in areas that have been continuously stressed by the strong wind.

    Reference
    [1] SU H L, Dong G H, Wang M, et al. Analysis on main characteristics and causes of landfall typhoons in recent 70 years[J]. Environ Sci Manage, 2020, 45(5):128-131. 宿海良, 东高红,王猛, 等. 1949年-2018年登陆台风的主要特征及灾害成因分析研究[J]. 环境科学与管理, 2020, 45(5):128-131.
    [2] JAFFE M J. Thigmomorphogenesis:The response of plant growth and development to mechanical stimulation[J]. Planta, 1973, 114(2):143-157. doi:10.1007/BF00387472.
    [3] CHEHAB E W, EICH E, BRAAM J. Thigmomorphogenesis:A complex plant response to mechano-stimulation[J]. J Exp Bot, 2009, 60(1):43-56. doi:10.1093/jxb/ern315.
    [4] PRUYN M L, EWERS III B J, TELEWSKI F W. Thigmomorpho-genesis:Changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation[J]. Tree Physiol, 2000, 20(8):535-540. doi:10.1093/treephys/20.8.535.
    [5] Vogel S. Leaves in the lowest and highest winds:Temperature, force and shape[J]. New Phytol, 2009, 183(1):13-26. doi:10.1111/j.1469-8137.2009.02854.x.
    [6] PAZ H, VEGA-RAMOS F, ARREOLA-VILLA F. Understanding hurricane resistance and resilience in tropical dry forest trees:A functional traits approach[J]. For Ecol Manage, 2018, 426:115-122. doi:10.1016/j.foreco.2018.03.052.
    [7] YANG M, DÉFOSSEZ P, DUPONT S. A root-to-foliage tree dynamic model for gusty winds during windstorm conditions[J]. Agric For Meteor, 2020, 287:107949. doi:10.1016/j.agrformet.2020.107949.
    [8] GULIMIRE·REZI, ZHAO X Y, YUAN H. Leaf anatomical structure of Zygophyllum xanthoxylum under chronic high wind[J]. Acta Bot Boreali-Occid Sin, 2012, 32(10):2047-2052. doi:10.3969/j.issn.1000-4025.2012.10.018. 古力米热·热孜, 赵晓英, 原慧. 模拟长期大风胁迫对霸王叶解剖结构特征的影响[J]. 西北植物学报, 2012, 32(10):2047-2052. doi:10. 3969/j.issn.1000-4025.2012.10.018.
    [9] ZHAO H L, HE Y H, YUE G Y, et al. Effects of wind blow and sand burial on the seedling growth and photosynthetic and transpiration rates of desert plants[J]. Chin J Ecol, 2010, 29(3):413-419. doi:10.13292/j. 1000-4890.2010.0066. 赵哈林, 何玉惠, 岳广阳, 等. 风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响[J]. 生态学杂志, 2010, 29(3):413-419. doi:10. 13292/j.1000-4890.2010.0066.
    [10] WU T G, ZHANG P, ZHANG L, et al. Morphological response of eight Quercus species to simulated wind load[J]. PLoS One, 2016, 11(9):e0163613. doi:10.1371/journal.pone.0163613.
    [11] LAUGHLINE D C. The intrinsic dimensionality of plant traits and its relevance to community assembly[J]. J Ecol, 2014, 102(1):186-193. doi:10.1111/1365-2745.12187.
    [12] READ Q D, MOORHEAD L C, SWENSON N G, et al. Convergent effects of elevation on functional leaf traits within and among species[J]. Funct Ecol, 2014, 28(1):37-45. doi:10.1111/1365-2435.12162.
    [13] MURREN C J, PIGLIUCCI M. Morphological responses to simulated wind in the genus Brassica (Brassicaceae):Allopolyploids and their parental species[J]. Amer J Bot, 2005, 92(5):810-818. doi:10.3732/ajb.92.5.810.
    [14] SHAO C P, CHEN Y J, LIN J Z. Wind induced deformation and vibration of a Platanus acerifolia leaf[J]. Acta Mech Sin, 2012, 28(3):583-594. doi:10.1007/s10409-012-0074-y.
    [15] SMITH V C, ENNOS A R. The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L.[J]. J Exp Bot, 2003, 54(383):845-849. doi:10. 1093/jxb/erg068.
    [16] ANTEN N P R, ALCALÁ-HERRERA R, SCHIEVING F, et al. Wind and mechanical stimuli differentially affect leaf traits in Plantagomajor[J]. New Phytol, 2010, 188(2):554-564. doi:10.1111/j.1469-8137.2010.03379.x.
    [17] ONODA Y, SCHIEVING F, ANTEN N P R. Effects of light and nutrient availability on leaf mechanical properties of Plantago major:A conceptual approach[J]. Ann Bot, 2008, 101(5):727-736. doi:10. 1093/aob/mcn013.
    [18] ASNER G P, KNAPP D E, ANDERSON C B, et al. Large-scale climatic and geophysical controls on the leaf economics spectrum[J]. Proc Natl Acad Sci USA, 2016, 113(28):4043-4051. doi:10.1073/pnas. 1604863113.
    [19] KEENAN T F, NIINEMETS Ü. Global leaf trait estimates biased due to plasticity in the shade[J]. Nat Plants, 2016, 3:16201. doi:10.1038/nplants.2016.201.
    [20] TELEWSKI F W. Is windswept tree growth negative thigmotropism?[J]. Plant Sci, 2012, 184:20-28. doi:10.1016/j.plantsci.2011.12.001.
    [21] NAN J, ZHAO X Y, YU B F. The effect of simulated chronic high wind on the phenotype of Salsola arbuscula[J]. Acta Ecol Sin, 2012, 32(20):6354-6360. doi:10.5846/stxb201201160099. 南江, 赵晓英, 余保峰. 模拟长期大风对木本猪毛菜表观特征的影响[J]. 生态学报, 2012, 32(20):6354-6360. doi:10.5846/stxb201201160099.
    [22] NICOTRA A B, COSGROVE M J, COWLING A, et al. Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species[J]. Oecologia, 2008, 154(4):625-635. doi:10. 1007/s00442-007-0865-1.
    [23] SCHYMANSKI S J, OR D. Wind increases leaf water use efficiency[J]. Plant Cell Environ, 2016, 39(7):1448-1459. doi:10.1111/pce.12700.
    [24] ZOU W T, WANG Y J, CAO Z, et al. Effects of heavy metal pollution on photosynthetic characteristics and heavy metal contents in forage leaves under different planting patterns[J]. J Trop Subtrop Bot, 2021, 29(1):31-40. doi:10.11926/jtsb.4244. 邹文桐, 王艳君, 曹智, 等. 不同种植模式下重金属污染对牧草叶片光合特性和重金属含量的影响[J]. 热带亚热带植物学报, 2021, 29(1):31-40. doi:10.11926/jtsb.4244.
    [25] CAI X A, RAO X Q, LIU Z F, et al. Effects of shading on leaf morphology, photosynthetic characteristics, and growth of Ilexasprella[J]. J Trop Subtrop Bot, 2020, 28(1):25-34. doi:10.11926/jtsb.4077. 蔡锡安, 饶兴权, 刘占锋, 等. 遮荫处理对梅叶冬青叶片形态、光合特性和生长的影响[J]. 热带亚热带植物学报, 2020, 28(1):25-34. doi:10.11926/jtsb.4077.
    [26] ZUO Z Y, GERILE, CHANG Y S, et al. 6 kinds of native plants in central and western Inner Mongolia branch tensile mechanical properties[J]. J Inner Mongolia Agric Univ (Nat Sci), 2015, 36(4):55-60. doi:10.16853/j.cnki.1009-3575.2015.04.010. 左志严, 格日乐, 常玉山, 等. 内蒙古中西部6种乡土植物枝条抗拉力学特性[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(4):55-60. doi:10.16853/j.cnki.1009-3575.2015.04.010.
    [27] GERILE, WURENTUYA, ZUO Z Y. Study on biomechanics charac-teristics and influencing factors of 4 kinds of plant branches and roots[J]. J Inner Mongolia Agric Univ (Nat Sci), 2015, 36(1):46-54. doi:10. 16853/j.cnki.1009-3575.2015.01.010. 格日乐, 乌仁图雅, 左志严. 4种植物枝条与根系生物力学特性及其影响因素研究[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(1):46-54. doi:10.16853/j.cnki.1009-3575.2015.01.010.
    [28] GERILE, SI Q, LIU J Y. Branches tensile mechanical characteristics and the influencing factors of six plant species in Inner Mongolia[J]. J Desert Res, 2013, 33(5):1333-1339. doi:10.7522/j.issn.1000-694X. 2013.00196. 格日乐, 斯琴, 刘俊宇. 6种防风植物枝条生物力学特性及影响因素[J]. 中国沙漠, 2013, 33(5):1333-1339. doi:10.7522/j.issn.1000-694X. 2013.00196.
    [29] CROOK M J, ENNOS A R. Stem and root characteristics associated with lodging resistance in four winter wheat cultivars[J]. J Agric Sci, 1994, 123(2):167-174. doi:10.1017/S0021859600068428.
    [30] SUN Y, WANG J Y, ZHANG H, et al. Variation in needle stoichio-metric characters of Pinus thunbergii along a coastal-inland gradient[J]. Chin J Ecol, 2019, 38(6):1662-1668. doi:10.13292/j.1000-4890.201906.013. 孙阳, 王晶媛, 张慧, 等. 海岸梯度上黑松针叶化学计量特征的变化规律[J]. 生态学杂志, 2019, 38(6):1662-1668. doi:10.13292/j. 1000-4890.201906.013.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郭君波,陈盛健,赵赢,戴卢民,虞木奎,颉洪涛.海防林叶片形态、光合特征和枝条抗性对长期风胁迫的响应[J].热带亚热带植物学报,2022,30(1):11~18

Copy
Share
Article Metrics
  • Abstract:250
  • PDF: 541
  • HTML: 444
  • Cited by: 0
History
  • Received:January 27,2021
  • Revised:April 09,2021
  • Online: January 27,2022
Article QR Code