Transcriptome Analysis of Response to Low Temperature Stress in Dongxiang Wild Rice at Seedling Stage
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to study the response mechanism of Dongxiang wild rice (Oryza rufipogon) to low temperature stress, its RNA-Seq transcriptional expression profile at seedling stage was studied. The results showed that a total of 10 200 differentially expressed genes (DEGs) under low temperature stress were detected compared with control under normal temperature, among which 5 201 DEGs were up-regulated and 4 999 were down-regulated. There were 426 DEGs located in the reported QTL interval of cold tolerance in rice, and 37 of them were family genes related to cold tolerance regulation. Go functional classification and KEGG metabolic pathway analysis of DEGs indicated that nucleic acid binding transcription factor activity, amino acid biosynthesis and photosynthetic metabolism were involved in the response to low temperature stress. The expression patterns of 12 DEGs, including ABA response protein gene, MYB transcription factor and 40S ribosomal protein SA gene, might be related to low temperature stress response by real-time fluorescence quantitative PCR analysis were consistent with those of RNA-Seq. So, it was suggested that plant hormone transduction pathways and transcription factor-related regulatory genes could play an important role in response to low temperature stress in Dongxiang wild rice seedling stage.

    Reference
    [1] ZHAO J L, ZHANG S H, YANG T F, et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms[J]. Physiol Plant, 2015, 154(3):381-394. doi:10.1111/ppl.12291.
    [2] LIU J Y, YAN S Y, ZHANG R X, et al. Low temperature tolerance of rice:A review[J]. Chin Sci Bull, 2020, 36(27):1-5.刘静妍, 闫双勇, 张融雪, 等. 水稻耐低温研究重要进展[J]. 中国农学通报, 2020, 36(27):1-5.
    [3] LIU C T, WANG W, MAO B G, et al. Cold stress tolerance in rice:Physiological changes, molecular mechanism, and future prospects[J]. Hereditas, 2018, 40(3):171-185. doi:10.16288/j.yczz.18-007.刘次桃, 王威, 毛毕刚, 等. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3):171-185. doi:10.16288/j.yczz.18007.
    [4] QIU Z H, HU B L, XIAO Y Q, et al. Research advances on important stress tolerant traits and its molecular mechanisms in Dongxiang wild rice[J]. China Rice, 2017, 23(5):12-18. doi:10.3969/j.issn.1006-8082. 2017.05.003.邱在辉, 胡标林, 肖叶青, 等. 东乡野生稻重要耐逆性状及其分子机制研究进展[J]. 中国稻米, 2017, 23(5):12-18. doi:10.3969/j.issn. 1006-8082.2017.05.003.
    [5] MAO D H, YU L, CHEN D Z, et al. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat[J]. Theor Appl Genet, 2015, 128(7):1359-1371. doi:10.1007/s00122-015-2511-3.
    [6] ZHAO J, QIN J J, SONG Q, et al. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.)[J]. J Inter Agric, 2016, 15(9):1933-1943. doi:10.1016/S2095-3119(15)61214-X.
    [7] LUO X D, DAI L F, CAO J F, et al. Identification and molecular cytology analysis of cold tolerance introgression lines derived from Oryza sativa L. mating with O. rufipogon Griff.[J]. Euphytica, 2012, 187(3):461-469. doi:10.1007/s10681-012-0769-y.
    [8] SHEN C X, LI D, HE R H, et al. Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress[J]. Plant Biol, 2014, 57(6):337-348. doi:10.1007/s12374-014-0183-1.
    [9] XIAO N, HUANG W N, LI A H, et al. Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings[J]. Theor Appl Genet, 2015, 128(1):173-185. doi:10.1007/s 00122-014-2420-x.
    [10] SHI D H, WANG J Y, BAI Y, et al. Transcriptome analysis of Chinese Ficus tikoua[J]. J Trop Subtrop Bot, 2020, 28(4):317-328. doi:10. 11926/jtsb.4164.石登红, 王继玥, 白禹, 等. 地果的转录组学分析[J]. 热带亚热带植物学报, 2020, 28(4):317-328. doi:10.11926/jtsb.4164.
    [11] LUO X D, LIU J, ZHAO J, et al. Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings[J]. J Integr Agric, 2018, 17(2):265-275. doi:10.1016/S2095-3119(17)61712-X.
    [12] JOO J, LEE Y H, SONG S I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice[J]. Planta, 2019, 249(5):1521-1533. doi:10.1007/s00425-019-03104-7.
    [13] HARTMANN L, PEDROTTI L, WEISTE C, et al. Crosstalk between two bZIP signaling pathways orchestrates salt-Induced metabolic reprogramming in Arabidopsis roots[J]. Plant Cell, 2015, 27(8):22442260. doi:10.1105/tpc.15.00163.
    [14] SUN X L, LI Y, CAI H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses[J]. J Plant Res, 2012, 125(3):429-438. doi:10.1007/s10265-011-0448-4.
    [15] PAN Y L, HU X, LI C Y, et al. SlbZIP38, a Tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance[J]. Genes, 2017, 8(12):402. doi:10.3390/genes 8120402.
    [16] JIA C L, ZHANG Y, ZHU L, et al. Application progress of transcripttome sequencing technology in biological sequencing[J]. Mol Plant Breed, 2015, 13(10):2388-2394. doi:10.13271/j.mpb.013.002388.贾昌路, 张瑶, 朱玲, 等. 转录组测序技术在生物测序中的应用研究进展[J]. 分子植物育种, 2015, 13(10):2388-2394. doi:10.13271/j. mpb.013.002388.
    [17] JIANG K Y, ZHOU M B. Recent advances in bamboo molecular biology[J]. J Trop Subtrop Bot, 2014, 22(6):632-642. doi:10.11926/j. issn.1005-3395.2014.06.012.姜可以, 周明兵. 竹子分子生物学研究进展[J]. 热带亚热带植物学报, 2014, 22(6):632-642. doi:10.11926/j.issn.1005-3395.2014.06.012.
    [18] ZHANG J, TANG L, RAN Q F, et al. Advances in RNA sequencing in response to low temperature stress in plants[J]. Mol Plant Breed, 2020, 18(6):1849-1866. doi:10.13271/j.mpb.018.001849.张健, 唐露, 冉启凡, 等. 植物响应低温胁迫转录组测序研究进展[J]. 分子植物育种, 2020, 18(6):1849-1866. doi:10.13271/j.mpb.018. 001849.
    [19] ZHU L, YUAN M, GAO H X, et al. Transcriptomic analysis of rice seedling responsive to low temperature[J]. Acta Agric Boreali-Sin, 2018, 33(5):40-51. 朱琳, 袁梦, 高红秀, 等. 水稻苗期低温应答转录组分析[J]. 华北农学报, 2018, 33(5):40-51.
    [20] GUO H, LI S X, SUN P Y, et al. Transcriptomes analysis of the cold tolerance difference of rice seedlings[J]. Mol Plant Breed, 2020, 18(6):1731-1739. doi:10.13271/j.mpb.018.001731.郭慧, 李树杏, 孙平勇, 等. 水稻苗期耐冷性差异的转录组分析[J]. 分子植物育种, 2020, 18(6):1731-1739. doi:10.13271/j.mpb.018.001731.
    [21] ZHANG T, ZHAO X Q, WANG W S, et al. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes[J]. PLoS One, 2012, 7(8):e43274. doi:10.1371/journal.pone. 0043274.
    [22] LIU F. Effects of low temperature on physiological traits and transcriptome of Casuarina cunninghamiana Miq. clones[D]. Changsha:Central South University of Forestry & Technology, 2015:5-7.刘芬. 低温胁迫对细枝木麻黄无性系生理指标和转录组的影响[D]. 长沙:中南林业科技大学, 2015:5-7.
    [23] JAIN M, KHURANA J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice[J]. FEBS J, 2009, 276(11):3148-3162. doi:10.1111/j. 1742-4658.2009.07033.x.
    [24] ZHAO Y D, DAI X H, BLACKWELL H E, et al. SIR1, an upstream component in auxin signaling identified by chemical genetics[J]. Science, 2003, 301(5636):1107-1110. doi:10.1126/science.1084161.
    [25] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324. doi:10.1016/j.cell.2016.08.029.
    [26] ZHANG L, LI X Y, LI D K, et al. CARK1 mediates ABA signaling by phosphorylation of ABA receptors[J]. Cell Discov, 2018, 4(1):30. doi:10.1038/s41421-018-0029-y.
    [27] SAH S K, REDDY K R, LI J X. Abscisic acid and abiotic stress tolerance in crop plants[J]. Front Plant Sci, 2016, 7:571. doi:10.3389/fpls.2016.00571.
    [28] LIU Q Q, ZHENG L, HE F, et al. Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots[J]. Plant Soil, 2015, 387(1/2):323-336. doi:10.1007/s11104-014-2290-7.
    [29] WANG L N. The WRKY family gene and its response to cold stress in grape[D]. Wuhan:Wuhan Botanical Garden, Chinese Academy of Sciences, 2014:10-18.王莉娜. WRKY基因家族的鉴定及其在葡萄冷胁迫中的功能分析[D]. 武汉:中国科学院研究生院, 2014:10-18.
    [30] JOO J, LEE Y H, SONG S I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice[J]. Planta, 2019, 249(5):1521-1533. doi:10.1007/s00425-019-03104-7.
    [31] HARTMANN L, PEDROTTI L, WEISTE C, et al. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots[J]. Plant Cell, 2015, 27(8):22442260. doi:10.1105/tpc.15.00163.
    [32] SUN X L, LI Y, CAI H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses[J]. J Plant Res, 2012, 125(3):429-438. doi:10.1007/s10265-011-0448-4.
    [33] PAN Y L, HU X, LI C Y, et al. SlbZIP38, a tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance[J]. Genes, 2017, 8(12):402. doi:10.3390/genes 8120402.
    [34] HUANG J, WANG M M, JIANG Y, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance[J]. Gene, 2008, 420(2):135-144. doi:10.1016/j.gene.2008.05.019.
    [35] RAMAMOORTHY R, JIANG S Y, KUMAR N, et al. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J]. Plant Cell Physiol, 2008, 49(6):865-879. doi:10.1093/pcp/pcn061.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

白李唯丹,戴亮芳,陈雅玲,张帆涛,谢建坤,罗向东.东乡野生稻苗期响应低温胁迫的转录组分析[J].热带亚热带植物学报,2021,29(6):616~625

Copy
Share
Article Metrics
  • Abstract:409
  • PDF: 582
  • HTML: 409
  • Cited by: 0
History
  • Received:January 22,2021
  • Revised:April 10,2021
  • Online: December 02,2021
Article QR Code