Response of Radial Growth of Pinus kwangtungensis at Different Elevations to Climate Factors in Mangsha
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [52]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Under the background of global warming, to achieve a better understanding about tree growth-climate association in subtropical China, tree-ring width chronologies of Pinus kwangtungensis at different elevations were established based on the standard method of dendrochronology. The relationship between radial growth and climatic factors was studied by response analysis and single-year analysis. The results showed that radial growth of P. kwangtungensis at the altitude of 1 400 m was negatively related to the averaged and maximum temperature in June of the current year, and positively related to precipitation in April of current year. The radial growth at the altitude of 1 200 m was significantly positively correlated with the temperature in March, the average temperature and the lowest temperature in October of last year and current year, negatively correlated with the lowest temperature in July of current year, and significantly positively correlated with the precipitation in November of last year. The redial growth at the altitude of 1 000 m was significantly negatively correlated with the average and maximum temperature in June of current year, the average temperature in January and the lowest temperature in October of last year. Additionally, the precipitation in March, October of last year and current year was positively correlated with radial growth. Temperature and precipitation together affect the growth of P. kwangtungensis in Mangshan. Therefore, the temperature and precipitation at the beginning of the growing season as well as the maximum temperature in summer should be the major climatic factors affecting the radial growth of trees.

    Reference
    [1] Intergovernmental Panel on climate Change (IPCC). Global Warming of 1.5℃:Climate Change 2018[EB/OL].[2019-08-08]. https://www.ipcc.ch/sr15/.
    [2] LI L, CHEN J K. Impacts of climate change on wild plants and conservation strategies[J]. Biodiv Sci, 2014, 22(5):549-563. doi:10.3724/SP.J.1003.2014.14124.黎磊,陈家宽. 气候变化对野生植物的影响及保护对策[J]. 生物多样性, 2014, 22(5):549-563. doi:10.3724/SP.J.1003.2014.14124.
    [3] CHEN L, HUANG J G, DAWSON A, et al. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canda[J]. Glob Change Biol, 2018, 24(2):655-667. doi:10. 1111/gcb.13855.
    [4] WEBER M G, FLANNIGAN M D. Canadian boreal forest ecosystem structure and function in a changing climate:Impact on fire regimes[J]. Environ Rev, 1997, 5(3/4):145-166. doi:10.1139/a97-008.
    [5] YIN Y H, MA D Y, WU S H. Climate change risk to forests in China associated with warming[J]. Sci Rep, 2018, 8(1):493. doi:10.1038/s41598-017-18798-6.
    [6] WU X D. Application of tree ring analysis in the study of environmental change[J]. Quaternary Sci, 1990(2):188-196.吴祥定. 树木年轮分析在环境变化研究中的应用[J]. 第四纪研究, 1990(2):188-196.
    [7] FANG K Y, CHEN Q Y, LIU C Z, et al. Advances in the study of dendrochronology[J]. Chin J Appl Ecol, 2014, 25(7):1879-1888. doi:10.13287/j.1001-9332.2014.0125.方克艳, 陈秋艳, 刘昶智, 等. 树木年代学的研究进展[J]. 应用生态学报, 2014, 25(7):1879-1888. doi:10.13287/j.1001-9332.2014.0125.
    [8] LIU L M, ZHAO Y H, GAO L S. Response of radial growth of Cunninghamia lanceolata plantaion to climate factors[J]. J NE For Univ, 2014, 42(5):6-8,12. doi:10.13759/j.cnki.dlxb.20140522.012.刘兰妹, 赵羿涵, 高露双. 杉木人工林径向生长对气候因子的响应[J]. 东北林业大学学报, 2014, 42(5):6-8. doi:10.13759/j.cnki.dlxb. 20140522.012.
    [9] LI T, HE X Y, CHEN Z J. Response of radial growth of Quercus mongolica to climate change in southeastern China:A case study of Qianshan Mountain[J]. Chin J Appl Ecol, 2014, 25(7):1841-1848. doi:10.13287/j.1001-9332.2014.0124.李腾, 何兴元, 陈振举. 东北南部蒙古栎径向生长对气候变化的响应——以千山为例[J]. 应用生态学报, 2014, 25(7):1841-1848. doi:10.13287/j.1001-9332.2014.0124.
    [10] ZHOU P, HUANG J G, LIANG H X, et al. Effects of temperature and precipitation on radial growth of Larix sibirica along altitudinal gradient on Altay Mountains, Xinjiang, China[J]. J Trop Subtrop Bot, 2019, 27(6):623-632. doi:10.11926/jtsb.4042.周鹏, 黄建国, 梁寒雪, 等. 不同海拔温度和降水对新疆阿尔泰山西伯利亚落叶松径向生长的影响[J]. 热带亚热带植物学报, 2019, 27(6):623-632. doi:10.11926/jtsb.4042.
    [11] KANG J, JIANG S W, HUANG J G. Radial growth response of four dominant tree species to climate factors in the Sayan Range of the Altai Mountains, Russia[J]. Acta Ecol Sin, 2020, 40(17):6135-6146. doi:10.5846/stxb201908081665.康剑, 蒋少伟, 黄建国. 阿尔泰山萨彦岭4种优势树种径向生长对气候因子的响应[J].生态学报, 2020, 40(17):6135-6146. doi:10.5846/stxb201908081665.
    [12] LIU Y, ZHANG X J, SONG H M, et al. Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qingling Moutains, central China[J]. Boreas, 2010, 38(38):285-291. doi:10.1111/j.1502-3885.2008.00065.x.
    [13] SHANG H M, HONG J C, ZHANG R B, et al. Tree-ring recorded 522-year precipitation from previous October to May northeastern Tibet, China[J]. J Mt Sci, 2018, 36(6):821-832. doi:10.16089/j.cnki. 1008-2786.000378.尚华明, 洪建昌, 张瑞波, 等. 树轮记录的西藏东北部过去552 a上年10月至当年5月降水量变化[J]. 山地学报, 2018, 36(6):821-832. doi:10.16089/j.cnki.1008-2786.000378.
    [14] QIAO J J, WANG T, PAN L, et al. Responses of radial growth to climate change in Pinus massoniana at difficient altitudes and slopes[J]. Chin J Appl Ecol, 2019, 30(7):2231-2240. doi:10.13287/j.10019332.201907.011.乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应[J]. 应用生态学报, 2019, 30(7):2231-2240. doi:10. 13287/j.1001-9332.201907.011.
    [15] DONG Z P, ZHENG H Z, FANG K Y, et al. Responses of tree-ring width of Pinus massiniana to climate change in Sanming, Fujian Province[J]. J Subtrop Resour Environ, 2014, 9(1):1-7. doi:10. 19687/j.cnki.1673-7105.2014.01.001.董志鹏, 郑怀舟, 方克艳, 等. 福建三明马尾松树轮宽度对气候变化的响应[J]. 亚热带资源与环境学报, 2014, 9(1):1-7. doi:10. 19687/j.cnki.1673-7105.2014.01.001.
    [16] HOU X Y, SHI J F, LI L L, et al. Growth response of Abies fargesii to climate in Shennongjia Mount of Hubei Province, Southeastern China[J]. Chin J Appl Ecol, 2015, 26(30):689-696. doi:10.13287/j.10019332.20141223.022.候鑫源, 史江峰, 李玲玲, 等. 湖北神农架巴山冷杉径向生长对气候的响应[J]. 应用生态学报, 2015, 26(30):689-696. doi:10. 13287/j.1001-9332.20141223.022.
    [17] PENG J F, WANG T. Response and model of tree-rings growth to climate factors at Huangbaishan Mountain in Henan Province[J]. Sci Geo Sin, 2015, 35(5):644-651. doi:10.13249/j.cnki.sgs.2015.05.018.彭剑峰, 王婷. 黄柏山树轮生长对气候因子的响应及模拟[J]. 地理科学, 2015, 35(5):644-651. doi:10.13249/j.cnki.sgs.2015.05.018.
    [18] SHI J F, LU H Y, WAN J D, et al. Using the ring width of Pinus armandii franch to reconstruction of winter semi-annual temperature in the eastern edge of Qin Mountains[J]. Quaternary Sci, 2009, 29(4):831-836. doi:10.3969/j.issn.1001-7410.2009.04.20.史江峰, 鹿化煜, 万建东, 等. 采用华山松树轮宽度重建秦岭东缘近百年冬半年温度[J]. 第四纪研究, 2009, 29(4):831-836. doi:10. 3969/j.issn.1001-7410.2009.04.20.
    [19] WANG T, SUN Y J, QIAO J J. Response of Pinus massoniana treering width in the Jiangle Area of Fujian Province to climate change[J]. J Beijing For Univ, 2019, 41(9):30-39. doi:10.13332/j.1000-1522. 20190067.王童, 孙玉军, 乔晶晶. 将乐林场马尾松树轮宽度对气候变化的响应[J]. 北京林业大学学报, 2019, 41(9):30-39. doi:10.13332/j.10001522.20190067.
    [20] TAO C, LI X X, WANG Q C, et al. Relationships between geographical distribution of endangered Pinus kwangtungensis and climate in China[J]. Plant Sci J, 2012, 30(6):577-583. doi:10.3724/SP.J.1142. 2012.60577.陶翠, 李晓笑, 王清春, 等. 中国濒危植物华南五针松的地理分布与气候的关系[J]. 植物科学学报, 2012, 30(6):577-583. doi:10. 3724/SP.J.1142.2012.60577.
    [21] ZHANG L, SU Z Y, CHEN B G. Interspecific relationships in the forest community dominated by Pinus kwangtungensis, a Chinese native species[J]. Acta Ecol Sin, 2006(4):1063-1072. doi:10.3321/j.issn:1000-0933.2006.04.012.张璐, 苏志尧, 陈北光. 中国特有植物——华南五针松群落的种间关系[J]. 生态学报, 2006(4):1063-1072. doi:10.3321/j.issn:10000933.2006.04.012.
    [22] SHEN Y, LUO J P, WANG X, et al. Characteristics of Pinus kwangtungensis community at Mangshan, Hunan Province[J]. J CS Univ For Technol, 2016, 36(2):1-7. doi:10.14067/j.cnki.1673-923x. 2016.02.001.沈燕, 罗江平, 王旭, 等. 湖南莽山华南五针松群落特征[J]. 中南林业科技大学学报, 2016, 36(2):1-7. doi:10.14067/j.cnki.1673-923x. 2016.02.001.
    [23] HOLMES R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bull, 1983, 43(3):69-78. doi:10. 1006/biol.1999.0214.
    [24] GRISSINO-MAYER H D. Evaluating crossdating accuracy:A manual and tutorial for the computer program COFECHA[J]. Tree-Ring Res, 2001, 57(2):205-221.
    [25] COOK E R, PETERS K. The smoothing spline:A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies[J]. Tree-ring Bull, 1981, 41:45-53.
    [26] ZHAO S D, JIANG Y, JIAO L, et al. A comparative analysis of ARSTAN and the dplr package of R language in analyses of tree-ring chronolosies[J]. Acta Ecol Sin, 2015, 35(22):7494-7502. doi:10. 5846/stxb201403300597.赵守栋, 江源, 焦亮, 等. ARSTAN程序和R语言dplR扩展包进行树轮年表分析的比较研究[J]. 生态学报, 2015, 35(22):7494-7502. doi:10.5846/stxb201403300597.
    [27] LI Z S, LIU G H, FU B J, et al. Influence of different detrending methods on climate signal in tree-ring chronologies in Wolong National Natural Reserve, western Sichuan, China[J]. Chin J Plant Ecol, 2011, 35(7):707-721. doi:10.3724/SP.J.1258.2011.00707.李宗善, 刘国华, 傅伯杰, 等. 不同去趋势方法对树轮年表气候信号的影响——以卧龙地区为例[J]. 植物生态学报, 2011, 35(7):707-721. doi:10.3724/SP.J.1258.2011.00707.
    [28] Biondi F, Waikul K. DENDROCLIM2002:A C++ program for statistical calibration of climate signals in tree-ring chronologies[J]. Comput Geosci, 2004, 30(3):303-311. doi:10.1016/j.cageo.2003.11.004.
    [29] SMITH K T. An organismal view of dendrochronology[J]. Dendrochronologia, 2008, 26(3):185-193. doi:10.1016/j.dendro.2008.06.002.
    [30] LI Y, LI S L, YANG C T, et al. Responses of tree-ring width of Pinus kwangtungensis to climaic factors in Nanling[J]. J Subtrop Resour Environ, 2016, 11(1):26-31. doi:10.19687/j.cnki.1673-7105.2016.01.005.李越, 李胜利, 杨昌腾, 等. 南岭华南五针松树轮宽度对气候因子的响应[J]. 亚热带资源与环境学报, 2016, 11(1):26-31. doi:10. 19687/j.cnki.1673-7105.2016.01.005.
    [31] CAO S J. The study on the response of tree-ring width of Pinaceae tree species to cliamte factors and climate reconstruction in Nanling region[D]. Changsha:Center South University Forestry Technol, 2015. doi:10.7666/d.Y2892232.曹受金. 南岭山地松科树种径向生长与气候因子关系及气候重建研究[D]. 长沙:中南林业科技大学, 2015. doi:10.7666/d.Y2892232.
    [32] ZHENG S X, SHANGGUAN Z P. Study on relationship between tree-ring and climatic change[J]. Sci Silv Sin, 2006, 42(6):100-107. doi:10.3321/j.issn:1001-7488.2006.06.017.郑淑霞, 上官周平. 树木年轮与气候变化关系研究[J]. 林业科学, 2006, 42(6):100-107. doi:10.3321/j.issn:1001-7488.2006.06.017.
    [33] Duan J P, Zhang Q B, Lu L X, et al. Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China[J]. Clim Dyn, 2012, 39(3/4):919-928. doi:10.1007/s00382-011-1232-9.
    [34] Chen F, Yuan Y J, Wei W S, et al. Tree ring-based winter temperature reconstruction for Changting, Fujian, subtropical region of Southeast China, since 1850:Linkages to the Pacific Ocean[J]. Theor Appl Climatol, 2012, 109(1/2):141-151. doi:10.1007/s00704-0110563-0.
    [35] PELLERIN M, DELESTRADE A, MATHIEU G, et al. Spring tree phenology in the Alps:Effects of air temperature, altitude and local topography[J]. Eur J For Res, 2012, 131(6):1957-1965. doi:10.1007/s10342-012-0646-1.
    [36] Fan Z X, Brauning A, Cao K F. Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings[J]. Dendrochronologia, 2008, 26(2):97-107. doi:10.1016/j. dendro.2008.01.003.
    [37] BAI Q F, HUO Z G, LI S K, et al. Coparison of accumulated temperature above 10℃ before and after the year of 1978 in China[J]. Chin J Appl Ecol, 2008, 19(8):1810-1816.柏秦凤, 霍治国, 李世奎, 等. 1978年前、后中国≥ 10℃年积温对比[J]. 应用生态学报, 2008, 19(8):1810-1816.
    [38] ZHENG J, GE Q, HAO Z, et al. Spring phenophases in recent decades over eastern China and it's possible link to climate changes[J]. Clim change, 2006, 77(3):449-462. doi:10.1007/s10584-005-9038-6.
    [39] CHEN X, HU B, YU R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China[J]. Glob Change Biol, 2005, 11(7):1118-1130. doi:10.1111/j.13652486.2005.00974.x.
    [40] HASENAUERA H, NEMANI RR, SCHADAUER K, et al. Forest growth response to changing climate between 1961 and 1990 in Austria[J]. For Ecol Manage, 1999, 122(3):209-219. doi:10.1016/S03781127(99)00010-9.
    [41] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and sault stress:Regulation mechanisms from whole plant to cell[J]. Ann Bot, 2009, 103(4):551-560. doi:10.1093/aob/mcn125.
    [42] PENG J F, GOU X H, CHEN F H, et al. The responses of growth ring width variations of Larix sibirica Ledb to climatic change in eastern Tianshan Mountains[J]. Acta Ecol Sin, 2006, 26(8):2723-2731. doi:10.3321/j.issn:1000-0933.2006.08.040.彭剑锋, 勾晓华, 陈发虎, 等. 天山东部西伯利亚落叶松树轮生长对气候要素的响应分析[J]. 生态学报, 2006, 26(8):2723-2731. doi:10.3321/j.issn:1000-0933.2006.08.040.
    [43] SENEVIRATNE S I, LUTHI D, LITSCHI M, et al. Land-atomosphere coupling and climate change in Europe[J]. Nature, 2006, 443(7108):205-209. doi:10.1038/nature05095.
    [44] KUANG Y W, XU Y M, ZHANG L, et al. Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content[J]. Front Plant Sci, 2017(8):802815. doi:10.3389/fpls.2017.00802.
    [45] PARRY M L, CANZIANI O F, PALUTIKOF J P, et al. Intergovernmental Panel on Climate Change Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UL:Camb Univ Press, 2007.
    [46] DONG S Y, GAO X J. Long-term climate change:Interpretation of IPCC fifth assessment report[J]. Climate Change Res, 2014, 10(1):56-59. doi:10.3969/j.issn.1673-1719.2014.01.012.董思言, 高学杰. 长期气候变化——IPCC第五次评估报告解读[J]. 气候变化研究进展, 2014, 10(1):56-59. doi:10.3969/j.issn.16731719.2014.01.012.
    [47] ZHANG H, SHAO X M, ZHANG Y. Research progress on the response of radial growth to climatic factors at different altitudes[J]. J Earth Environ, 2012, 3(3):845-854. doi:10.7515/JEE201203001.张慧, 邵雪梅, 张永. 不同海拔高度树木径向生长对气候要素响应的研究进展[J]. 地球环境学报, 2012, 3(3):845-854. doi:10.7515/JEE201203001.
    [48] PENG J F, GOU X H, CHEN F H, et al. Characteristics of ring-width chronologies of Picea crassifolia and their responses to climate at different elevations in the Anyemaqen Mountains[J]. Acta Ecol Sin, 2007, 27(8):3268-3276. doi:10.3321/j.issn:1000-0933.2007.08.021.彭剑锋, 勾晓华, 陈发虎, 等. 阿尼玛卿山地不同海拔青海云杉树轮生长特性及其对气候的响应[J]. 生态学报, 2007, 27(8):32683276. doi:10.3321/j.issn:1000-0933.2007.08.021.
    [49] CHEN L, HUANG J G, STADT K J, et al. Drought explains variation in the radial growth of white spruce in western Canada[J]. Agric For Meteor, 2017, 233:133-142. doi:10.1016/j.agrformet.2016.11.012.
    [50] D'ARRIGO R, WILSON R, LIEPERT B, et al. On the divergence problem in northern forests:A review of the tree-ring evidence and possible cause[J]. Glob Planet Change, 2008, 60(3/4):289-305. doi:10.1016/j.gloplacha.2007.03.004.
    [51] LI Y D. Nanling Mountain Nature Reserve following the low temperature and sleet disaster, the sensitive area which needs to be rescued.[J]. Sci Silv Sin, 2008, 44(6):2-4. doi:10.3321/j.issn:1001-7488.2008.06. 002.李意德. 低温雨雪冰冻灾害后的南岭山脉自然保护区——亟待拯救的生态敏感区域[J]. 林业科学, 2008, 44(6):2-4. doi:10.3321/j. issn:1001-7488.2008.06.002.
    [52] WANG X, HUANG S N, ZHOU G Y, et al. Effects of the frozen rain and snow disaster on the dominant species of Castanopsis forests in Yangdongshan shierdushui provincial nature reserve of Guangdong[J]. Sci Silv Sin, 45(9):42-45. doi:10.3321/j.issn:1001-7488.2009.09.008.王旭, 黄世能, 周光益, 等. 冰雪灾害对杨东山十二度水自然保护区栲类林建群种的影响[J]. 林业科学, 2009, 45(9):42-45. doi:10. 3321/j.issn:1001-7488.2009.09.008.
    Cited by
Get Citation

黄蕴凯,沈燕,王旭,周光益,康剑.莽山不同海拔华南五针松径向生长对气候因子的响应[J].热带亚热带植物学报,2021,29(6):605~615

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 18,2021
  • Revised:April 28,2021
  • Online: December 02,2021
Article QR Code