Variation Patterns in C and N Concentrations in the First-order Roots of 89 Woody Species in Subtropical Evergreen Broad-leaved Forest
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the variation patterns of nutrient elements for the first-order roots of woody plants in subtropical evergreen broad-leaved forests, the carbon and nitrogen concentrations of the first-order roots of 89 tree species in Wanmu Forest Nature Reserve, Jian'ou, Fujian Province, were determined based on root order method. The results showed that the mean C, N concentrations in the first-order roots of 89 tree species were 433.9 and 13.7 mg/g, and C:N ratio was 36.7, which variation coefficients were 6.4%, 39.2% and 39.9%, respectively. There were significant differences in C concentration of the first-order roots among different leaf habits (such as evergreen and deciduous trees) and growth forms (including tree, semi-tree or shrub and shrub). However, there was no significant difference in N concentration and C:N ratio. The differences in C, N concentrations and C:N ratio of the first-order roots among six main families (Lauraceae, Fagaceae, Aquifoliaceae, Symplocaceae, Pentaphylacaceae and Elaeocarpaceae) were significant. The N concentration of first-order roots increased with the phylogeny level from low to high. Therefore, it was indicated that the interspecific variation of the first-order roots in C concentration was lower than N concentration in the subtropical evergreen broad-leaved forest, the N concentration of the first-order roots was influenced by phylogeny, however, the concentration of C was affected by leaf habits and growth forms, showing a certain convergence effect.

    Reference
    [1] Bloom A J, Chapin III A F, Mooney H A. Resource limitation in plants:An economic analogy[J]. Ann Rev Ecol Syst, 1985, 16:363-392. doi:10.1146/annurev.es.16.110185.002051.
    [2] ZHANG X Q, WU K H, MURACH D. A review of methods for fine-root production and turnover of trees[J]. Acta Ecol Sin, 2000, 20(5):875-883. doi:10.3321/j.issn:1000-0933.2000.05.026.张小全, 吴可红, MURACH D. 树木细根生产与周转研究方法评述[J]. 生态学报, 2000, 20(5):875-883. doi:10.3321/j.issn:1000-0933. 2000.05.026.
    [3] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecol Monogr, 2002, 72(2):293-309. doi:10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2.
    [4] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Rede-fining fine roots improves understanding of below-ground contribu-tions to terrestrial biosphere processes[J]. New Phytol, 2015, 207(3):505-518. doi:10.1111/nph.13363.
    [5] GILL R A, JACKSON R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytol, 2000, 147(1):13-31. doi:10. 1046/J.1469-8137.2000.00681.X.
    [6] NORBY R J, JACKSON R B. Root dynamics and global change:Seeking an ecosystem perspective[J]. New Phytol, 2000, 147(1):3-12. doi:10.1046/j.1469-8137.2000.00676.x.
    [7] CHEN X P, GUO B Q, ZHONG Q L, et al. Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains[J]. Acta Ecol Sin, 2018, 38(1):273-281. doi:10.5846/stxb201701040034.陈晓萍, 郭炳桥, 钟全林, 等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报, 2018, 38(1):273-281. doi:10.5846/stxb201701040034.
    [8] NADELHOFFER K J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems[J]. New Phytol, 2000, 147(1):131-139. doi:10.1046/j.1469-8137.2000.00677.x.
    [9] BASSIRIRAD H. Kinetics of nutrient uptake by roots:Responses to global change[J]. New Phytol, 2000, 147(1):155-169. doi:10.1046/j. 1469-8137.2000.00682.x.
    [10] KONG D L, MA C E, ZHANG Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species[J]. New Phytol, 2014, 203(3):863-872. doi:10.1111/nph.12842.
    [11] LIU C, XIANG W H, ZOU L M, et al. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests[J]. Plant Soil, 2019, 436(1):347-364. doi:10.1007/s11104-019-03934-0.
    [12] ZHANG T, TIAN Q, LUO L J, et al. The biomass of herbaceous plant communities and its chemometrics characteristics of root C, N and P in the Motianling Northern Slope at low altitudes[J]. For Sci Technol, 2019(5):3-6. doi:10.13456/j.cnki.lykt.2018.07.10.0001.张涛, 田青, 罗立娇, 等. 摩天岭北坡低海拔区草本植物生物量及根C、N、P化学计量学特征[J]. 林业科技通讯, 2019(5):3-6. doi:10. 13456/j.cnki.lykt.2018.07.10.0001.
    [13] LIU L, GE J L, SHU H W, et al. C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China[J]. Chin J Plant Ecol, 2019, 43(6):482-489. doi:10.17521/cjpe. 2019.0064.刘璐, 葛结林, 舒化伟, 等. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6):482-489. doi:10.17521/cjpe.2019.0064.
    [14] GENG Y, WANG L, JIN D M, et al. Alpine climate alters the relation-ships between leaf and root morphological traits but not chemical traits[J]. Oecologia, 2014, 175(2):445-455. doi:10.1007/s00442-014-2919-5.
    [15] CHEN W L, ZENG H, EISSENSTAT D M, et al. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time[J]. Glob Ecol Biogeogr, 2013, 22(7):846-856. doi:10.1111/geb.12048.
    [16] WANG R L, WANG Q F, ZHAO N, et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits:Evidence of multidimensional root traits[J]. Funct Ecol, 2018, 32(1):29-39. doi:10.1111/1365-2435.12983.
    [17] UAN Z Y, CHEN H Y H, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nat Commun, 2011, 2:344. doi:10.1038/ncomms1346.
    [18] MA Z Q, GUO D L, XU X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555(7694):94-97. doi:10.1038/nature25783.
    [19] GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytol, 2008, 180(3):673-683. doi:10.1111/j.1469-8137.2008.02573.x.
    [20] ZHOU Y J, WANG M T, WANG Z Y, et al. Nutrient and ecological stoichiometry of different root order fine roots of 59 evergreen and deciduous tree species in subtropical zone[J]. Acta Ecol Sin, 2020, 40(14):4975-4984. doi:10.5846/stxb201907031401.周永姣, 王满堂, 王钊颖, 等. 亚热带59个常绿与落叶树种不同根序细根养分及化学计量特征[J]. 生态学报, 2020, 40(14):4975-4984. doi:10.5846/stxb201907031401.
    [21] GONG S H. The influence of environment and phylogenic background on plant functional trait in Yanhe River Catchment[D]. Yangling:Northwest Agricultural and Forestry University, 2012:35.龚时慧. 环境与系统发育背景对延河流域植物群落功能性状的影响[D]. 杨凌:西北农林科技大学, 2012:35.
    [22] CHANG Y N, ZHONG Q L, CHENG D L, et al. Stoichiometric characteristics of C, N, P and their distribution pattern in plants of Castanopsis carlesii natural forest in Youxi[J]. J Plant Resour Environ, 2013, 22(3):1-10. doi:10.3969/j.issn.1674-7895.2013.03.01.常云妮, 钟全林, 程栋梁, 等. 尤溪天然米槠林植物碳氮磷的化学计量特征及其分配格局[J]. 植物资源与环境学报, 2013, 22(3):1-10. doi:10.3969/j.issn.1674-7895.2013.03.01.
    [23] WANG Z Y, CHENG L, WANG M T, et al. Fine root traits of woody plants in deciduous forest of the Wuyi Mountains[J]. Acta Ecol Sin, 2018, 38(22):8088-8097. doi:10.5846/stxb201712262331.王钊颖, 程林, 王满堂, 等. 武夷山落叶林木本植物细根性状研究[J]. 生态学报, 2018, 38(22):8088-8097. doi:10.5846/stxb201712262331.
    [24] XU Y, BAO Y J, LI Z H, et al. Stoichiometry characteristics of carbon and nitrogen of grassland plants in the Agro-pastoral Ecotone of Inner Mongolia and Liaoning Border[J]. Chin J Gras, 2019, 41(4):101-109. doi:10.16742/j.zgcdxb.20180148. 徐媛, 鲍雅静, 李政海, 等. 蒙辽农牧交错区草地植物碳氮化学计量特征[J]. 中国草地学报, 2019, 41(4):101-109. doi:10.16742/j. zgcdxb.20180148.
    [25] LIU W X, ZHU K J. Characteristics of nitrogen and phosphorus stoi-chiometry of plants in different functional groups on Alpine Meadow in the eastern edge of Tibetan Plateau[J]. Chin J Gras, 2013, 35(2):52-58. doi:10.3969/j.issn.1673-5021.2013.02.0100. 刘雯霞, 朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报, 2013, 35(2):52-58. doi:10.3969/j.issn.1673-5021.2013.02.0100.
    [26] YU H L, FAN J W, ZHONG H P, et al. Characteristics of N and P stoichiometry of plants in different functional groups in the Qinghai-Tibet Plateau regions[J]. Acta Ecol Sin, 2017, 37(11):3755-3764. doi:10.5846/stxb201604040609.于海玲, 樊江文, 钟华平, 等. 青藏高原区域不同功能群植物氮磷生态化学计量学特征[J]. 生态学报, 2017, 37(11):3755-3764. doi:10.5846/stxb201604040609.
    [27] ZHUO M X. Stoichiometric characteristics of eight Lauraceae species in a subtropical evergreen broad-leaved forest[J]. J Subtrop Resour Environ, 2019, 14(1):17-22. doi:10.19687/j.cnki.1673-7105.2019.01.003.卓鸣秀. 亚热带常绿阔叶林8种樟科树种细根化学计量特征[J]. 亚热带资源与环境学报, 2019, 14(1):17-22. doi:10.19687/j.cnki.1673-7105.2019.01.003.
    [28] ZHOU M, BAI W M, ZHANG Y S, et al. Multi-dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes[J]. J Ecol, 2018, 106(6):2320-2331. doi:10.1111/365-2745.12977.
    [29] VALVERDE-BARRANTES O J, SMEMO K A, BLACKWOOD C B. Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees[J]. Funct Ecol, 2015, 29(6):796-807. doi:10.1111/1365-2435.12384.
    [30] VALVERDE-BARRANTES O J, FRESCHET G T, ROUMET C, et al. A worldview of root traits:The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants[J]. New Phytol, 2017, 215(4):1562-1573. doi:10.1111/nph.14571.
    [31] GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3):450-457. doi:10.1007/s00442-004-1596-1.
    [32] ZANNE A E, TANK D C, CORNWELL W K, et al. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506(7486):89-92. doi:10.1038/nature12872.
    [33] WANG X, CHEN G S, YAN X J, et al. Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest[J]. Chin J Plant Ecol, 2019, 43(11):969-978. doi:10.17521/cjpe. 2019.0189.王雪, 陈光水, 闫晓俊, 等. 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019, 43(11):969-978. doi:10. 17521/cjpe.2019.0189.
    [34] BLOMBERG S P, GARLAND JR T, IVES A R. Testing for phylo-genetic signal in comparative data:Behavioral traits are more labile[J]. Evolution, 2003, 57(4):717-745. doi:10.1111/j.0014-3820.2003.tb00285.x.
    [35] WIKSTRÖM N, SAVOLAINEN V, CHASE M W. Evolution of the angiosperms:Calibrating the family tree[J]. Proc Roy Soc B Biol Sci, 2001, 268(1482):2211-2220. doi:10.1098/rspb.2001.1782.
    [36] ZHANG J H, HE N P, LIU C C, et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environ-ments[J]. Glob Chang Biol, 2020, 26(4):2534-2543. doi:10.1111/gcb. 14973.
    [37] XU Y, GU J C, DONG X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China[J]. Chin J Plant Ecol, 2011, 35(9):955-964. doi:10.3724/SP.J.1258.2011.00955.许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量[J]. 植物生态学报, 2011, 35(9):955-964. doi:10.3724/SP.J.1258.2011.00955.
    [38] MA Y Z, ZHONG Q L, JIN B J, et al. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China[J]. Chin J Plant Ecol, 2015, 39(2):159-166. doi:10. 17521/cjpe.2015.0015.马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2):159-166. doi:10.17521/cjpe.2015.0015.
    [39] NOVAES E, KIRST M, CHIANG V, et al. Lignin and biomass:A negative correlation for wood formation and lignin content in trees[J]. Plant Physiol, 2010, 154(2):555-561. doi:10.1104/pp.110.161281.
    [40] ZHANG Y X, ZHU L W, LIU N. C, N, and P concentrations and their stoichiometry of leaves and roots with different life forms in Hainan Province[J]. J Trop Subtrop Bot, 2020, 28(2):131-135. doi:10.11926/jtsb.4115.张亚兴, 朱丽薇, 刘楠. 海南不同生活型植物叶片和根系C、N、P化学计量特征[J]. 热带亚热带植物学报, 2020, 28(2):131-135. doi:10.11926/jtsb.4115.
    [41] WANG X J. The geographical differences of plant functional traits and functional diversity in broad-leaved Korean pine forests in the north-east of China[D]. Beijing:Beijing Forestry University, 2015:42.王晓洁. 东北阔叶红松林植物功能性状与功能多样性的地理差异研究[D]. 北京:北京林业大学, 2015:42.
    [42] JIA Q Q. Functional traits of fine roots and their relationship with leaf traits of 50 major species in a subtropical forest in Gutianshan[D]. Qiqihar:Qiqihar University, 2011:58.贾全全. 古田山亚热带森林50个主要树种细根功能属性及其与叶片相关性研究[D]. 齐齐哈尔:齐齐哈尔大学, 2011:58.
    [43] ST JOHN T V. Root size, root hairs and mycorrhizal infection:A re-examination of Baylis's hypothesis with tropical trees[J]. New Phytol, 1980, 84(3):483-487. doi:10.1111/j.1469-8137.1980. tb04555.x.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王雪,闫晓俊,范爱连,贾林巧,熊德成,黄锦学,陈光水,姚晓东.亚热带常绿阔叶林89种木本植物一级根碳氮浓度变异规律[J].热带亚热带植物学报,2021,29(5):474~482

Copy
Share
Article Metrics
  • Abstract:441
  • PDF: 536
  • HTML: 477
  • Cited by: 0
History
  • Received:December 29,2020
  • Revised:February 28,2021
  • Online: September 23,2021
Article QR Code