Characteristics of Soil Nutrient and Enzyme Activities in Plantations of Eucalyptus urophylla×E. grandis and Five Acacia Species
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to reveal the enzymatic mechanism of soil nutrient transformation, the soil nutrient contents and enzyme activities in plantations, such as nitrogen-fixing tree species (Acacia crassicarpa, A. melanoxylon, A. cincinnata, A. auriculiformis, A. mangium) and non-nitrogen-fixing species (Eucalyptus urophylla×E. grandis) were studied, and their relationships were analyzed. The results showed that the pH in 40-60 cm soil of Acacia plantations were higher than that in E. urophylla×E. grandis plantation, which total P and K contents at all soil layers were lower than those in E. urophylla×E. grandis plantation, while total C and total N contents at 20-40 cm soil were high in Acacia plantations. Soil available nutrients contents were significantly higher in A. melanoxylon and A. mangium than those in E. urophylla×E. grandis plantation (P<0.05). Compared to E. urophylla×E. grandis plantation, the acid phosphatase and cellulase activities at 0-10 cm soil layer were high in Acacia plantations, which the activities of soil urease, sucrase, cellulase and aryl sulfatase were the highest in A. auriculiformis plantation (P<0.05); the activities of soil urease, cellulose, chitinase and amylase were the highest in A. cincinnata plantation (P<0.05). Correlation analysis revealed that the activities of soil urease, sucrase and chitinase were significantly negative to soil AP (P<0.05); the activities of soil sucrase and cellulase were signifi-cantly negative to soil NH4+-N; the activities of soil urease, cellulase and aryl sulfatase were significantly negative to soil TK; the activities of soil chitinase were significantly positively to soil TN; the activities of soil amylase were significantly positively to soil NH4+-N; the activities of soil catalase were significantly positively to soil TK. Therefore, compared to E. urophylla×E. grandis plantation, the introduced Acacia species to soil degraded mountains in southern China could improve key soil enzyme activities and soil available nutrients, which was beneficial to the eco-restoration of degraded soil and the maintenance of long-term productivity of plantations.

    Reference
    [1] YANG Y S, WANG L X, YANG Z J, et al. Large ecosystem service benefits of assisted natural regeneration[J]. J Geophys Res Biogeo, 2018, 123(2):676-687. doi:10.1002/2017JG004267.
    [2] LIU B, LIU Q Q, DARYANTO S, et al. Responses of Chinese fir and Schima superba seedlings to light gradients:Implications for the restoration of mixed broadleaf-conifer forests from Chinese fir mono-cultures[J]. For Ecol Manag, 2018, 419-420:51-57. doi:10.1016/j. foreco.2018.03.033.
    [3] Yang L, Liu N, Ren H, et al. Facilitation by two exotic Acacia:Acacia auriculiformis and Acacia mangium as nurse plants in south China[J]. For Ecol Manag, 2009, 257(8):1786-1793. doi:10.1016/j. foreco.2009.01.033.
    [4] ZHAO C C, WANG W. Soil nematode community in Acacia crassi-capa and Eucalyptus urophylla plantations[J]. Ecol Environ Sci, 2014, 23(1):73-79. doi:10.16258/j.cnki.1674-5906.2014.01.026.赵灿灿, 王伟. 厚荚相思和尾叶桉人工林土壤线虫群落研究[J]. 生态环境学报, 2014, 23(1):73-79. doi:10.16258/j.cnki.1674-5906. 2014.01.026.
    [5] LIAO G R, LIN S R, LI S Y, et al. Causes and control of land capacity degeneration of eucalyptus plantations in Leizhou Peninsula[J]. Soil Environ Sci, 2002, 11(3):268-273. doi:10.3969/j.issn.1674-5906.2002. 03.012.廖观荣, 林书蓉, 李淑仪, 等. 雷州半岛桉树人工林地力退化的成因与防治措施[J]. 土壤与环境, 2002, 11(3):268-273. doi:10.3969/j. issn.1674-5906.2002.03.012.
    [6] YU F K, HUANG X H, WANG K Q, et al. An overview of ecological degradation and restoration of Eucalyptus plantation[J]. Chin J Eco-Agric, 2009, 17(2):393-398. doi:10.3724/SP.J.1011.2009.00393.于福科, 黄新会, 王克勤, 等, 桉树人工林生态退化与恢复研究进展[J]. 中国生态农业学报, 2009, 17(2):393-398. doi:10.3724/SP.J. 1011.2009.00393.
    [7] LI Q, SUN Y N, LIN L, et al. Changes of soil enzyme activities and nutrients across different succession stages of grazing alpine Kobresia grassland[J]. Chin J Appl Ecol, 2019, 30(7):2267-2274. doi:10. 13287/j.1001-9332.201907.001.李茜, 孙亚男, 林丽, 等. 放牧高寒嵩草草地不同演替阶段土壤酶活性及养分演变特征[J]. 应用生态学报, 2019, 30(7):2267-2274. doi:10.13287/j.1001-9332.201907.001.
    [8] PENG S L, LIU J, LU H F. Characteristics and role of Acacia auriculiformis on vegetation restoration in lower subtropics of China[J]. J Trop For Sci, 2005, 17(4):508-525.
    [9] XUE Y, CHEN Y Q, LIU X Z, et al. Comparisons of soil chemical properties under four typical forest stands in northeast Hainan[J]. Ecol Sci, 2014, 33(6):1142-1146. doi:10.14108/j.cnki.1008-8873.2014.06.017.薛杨, 陈毅青, 刘宪钊, 等. 海南东北部4种典型人工林土壤化学性质研究[J]. 生态科学, 2014, 33(6):1142-1146. doi:10.14108/j. cnki.1008-8873.2014.06.017.
    [10] FENG H F, LIU L Y, XUE L. Effects of nitrogen and phosphorus additions and stand density on soil chemical property in Acacia auricu-liformis stands[J]. Chin J Plant Ecol, 2019, 43(11):1010-1020. doi:10.17521/cjpe.2019.0168.冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 43(11):1010-1020. doi:10. 17521/cjpe.2019.0168.
    [11] ZHAO Q G. Spatiotemporal Variation, Mechanism and Regulation of Soil Degradation in Red Soil Region of Eastern China[M]. Beijing:Science Press, 2002赵其国. 中国东部红壤地区土壤退化的时空变化、机理及调控[M]. 北京:科学出版社, 2002.
    [12] XU W, ZHANG Y P, YANG Z Y, et al. Study on soil properties of Eucalyptus plantation in Hainan[J]. Hunan Agric Sci, 2019, 51(11):42-45,51. doi:10.16498/j.cnki.hnnykx.2019.011.012.徐伟, 张玉平, 杨振宇, 等. 海南不同林地土壤性状差异研究[J]. 湖南农业科学, 2019, 51(11):42-45,51. doi:10.16498/j.cnki.hnnykx. 2019.011.012.
    [13] HAN J F, YAO Q D, HONG C F, et al. Study on the growth and ecological benefit of mixed stand of Eucalyptus grandis×E. urophylla and Acacia mangium×A. auriculiformis[J]. Eucalypt Sci Technol, 2008, 25(1):15-18. doi:10.3969/j.issn.1674-3172.2008.01.004.韩金发, 姚庆端, 洪长福, 等. 巨尾桉、马大相思混交林生长和生态效益研究[J]. 桉树科技, 2008, 25(1):15-18. doi:10.3969/j.issn. 1674-3172.2008.01.004.
    [14] DENG L S, YANG X L, JIANG X, et al. Soil physical and chemical properties of six fast-growing tree species plantations after affore-station for six years[J]. Guangxi For Sci, 2019, 48(3):371-376. doi:10.3969/j.issn.1006-1126.2019.03.018.邓荔生, 杨秀玲, 蒋霞, 等. 6种速生树种人工林造林6年后土壤理化性质[J]. 广西林业科技, 2019, 48(3):371-376. doi:10.3969/j. issn.1006-1126.2019.03.018.
    [15] LIN W Q, GAO W, YE G F, et al. Litter nutrient return of different plantations in a coastal sand dune of southern subtropical region[J]. J For Environ, 2019, 39(3):225-231. doi:10.13324/j.cnki.jfcf.2019.03. 001.林文泉, 高伟, 叶功富, 等. 南亚热带海岸沙地不同林分凋落物量及养分归还[J]. 森林与环境学报, 2019, 39(3):225-231. doi:10. 13324/j.cnki.jfcf.2019.03.001.
    [16] LU D D, WU B G, WANG X Q, et al. A general review on the research development of Acacia spp.[J]. J Fujian Coll For, 2004, 24(1):92-96. doi:10.3969/j.issn.1001-389X.2004.01.023.陆道调, 吴保国, 王希群, 等. 相思树种研究发展综述[J]. 福建林学院学报, 2004, 24(1):92-96. doi:10.3969/j.issn.1001-389X.2004.01. 023.
    [17] HE C, LI Z Y, FANG H X, et al. Dynamic of soil phenolic acids and enzyme activities in pure and mixed stands of Eucalyptus grandis×Europhylla and Acacia mangium plantation[J]. J W Chin For Sci, 2017, 46(3):103-108,120. doi:10.16473/j.cnki.xblykx1972.2017.03.017.何春, 李祖毅, 方慧鑫, 等. 巨尾桉、马占相思纯林及混交林土壤酚酸与酶活性的差异[J]. 西部林业科学, 2017, 46(3):103-108,120. doi:10.16473/j.cnki.xblykx1972.2017.03.017.
    [18] XUE L, KUANG L G, CHEN H Y, et al. Soil nutrients, microorganisms and enzyme activities of different stands[J]. Acta Pedol Sin, 2003, 40(2):280-285. doi:10.11766/trxb200103200218.薛立, 邝立刚, 陈红跃, 等. 不同林分土壤养分、微生物与酶活性的研究[J]. 土壤学报, 2003, 40(2):280-285. doi:10.11766/trxb200103200218.
    [19] PAN C M, YANG F, LAN P L, et al. Characteristics of soil microbes in south subtropical lateritic red earth under artificial forests[J]. J Trop Subtrop Bot, 1998, 6(2):158-165. doi:10.3969/j.issn.1005-3395.1998. 2.012.潘超美, 杨风, 蓝佩玲, 等. 南亚热带赤红壤地区不同人工林下的土壤微生物特性[J]. 热带亚热带植物学报, 1998, 6(2):158-165. doi:10.3969/j.issn.1005-3395.1998.2.012.
    [20] ZHANG H, MO L J, CHEN K X, et al. Impact of thinning on physico-chemical properties, soil microorganism biomass, and soil enzyme activities on the season of Hong Kong plantation[J]. Ecol Environ Sci, 2016, 25(12):1937-1944. doi:10.16258/j.cnki.1674-5906.2016.12.007.张浩, 莫罗坚, 陈葵仙, 等. 香港人工林改造对林分土壤理化性质、土壤微生物生物量及土壤酶活性的季节影响[J]. 生态环境学报, 2016, 25(12):1937-1944. doi:10.16258/j.cnki.1674-5906.2016.12. 007.
    [21] LIU J B, CHEN G S, GUO J F, et al. Advances in research on the responses of forest soil enzymes to environmental change[J]. Acta Ecol Sin, 2017, 37(1):110-117. doi:10.5846/stxb201608011581.刘捷豹, 陈光水, 郭建芬, 等. 森林土壤酶对环境变化的响应研究进展[J]. 生态学报, 2019, 37(1):110-117. doi:10.5846/stxb201608011581.
    [22] ZHANG C, ZOU H T, ZHANG X Y, et al. Effects of nitrogen additions on soil hydrolase and oxidase activities in Pinus elliottii plantations[J]. Chin J Appl Ecol, 2016, 27(11):3427-3434. doi:10.13287/j.1001-9332. 201611.016.张闯, 邹洪涛, 张心昱, 等. 氮添加对湿地松林土壤水解酶和氧化酶活性的影响[J]. 应用生态学报, 2016, 27(11):3427-3434. doi:10. 13287/j.1001-9332.201611.016.
    [23] LI D D, ZHANG X Y, GREEN S M, et al. Nitrogen functional gene activity in soil profiles under progressive vegetative recovery after abandonment of agriculture at the Puding Karst Critical Zone Observatory, SW China[J]. Soil Biol Biochem, 2018, 125:93-102. doi:10.1016/j.soilbio.2018.07.004.
    [24] LIU X, SUO P H, DU D J, et al. Soil carbon and nitrogen transformed enzyme activities in continuously cultivated Chinese fir (Cunninghamia lanceolate) plantations and their correlations with soil physicochemical factors[J]. Acta Ecol Sin, 2020, 40(1):274-256. doi:10.5846/stxb 201811252551.刘先, 索沛蘅, 杜大俊, 等. 连栽杉木人工林参与土壤碳氮转化过程酶活性及其与土壤理化因子的相关性[J]. 生态学报, 2020, 40(1):274-256. doi:10.5846/stxb201811252551.
    [25] WU J Y, YE D B, WANG X J. Soil enzyme activity and its correlation with soil physical and chemical properties in suburban forests in Changsha City[J]. J NE For Univ, 2010, 38(3):97-99. doi:10.3969/j. issn.1000-5382.2010.03.029.吴际友, 叶道碧, 王旭军. 长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性[J]. 东北林业大学学报, 2010, 38(3):97-99. doi:10.3969/j.issn.1000-5382.2010.03.029.
    [26] PAN F J, ZHANG W, LIANG Y M, et al. Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem, southwestern China[J]. Environ Sci Pollut Res, 2018, 25:16979-6990. doi:10.1007/s11356-018-1673-3.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

周丽丽,李树斌,潘辉,王万萍,吴亚岚,郑茹萍.5种相思树和尾巨桉人工林土壤养分和酶活性特征[J].热带亚热带植物学报,2021,29(5):483~493

Copy
Share
Article Metrics
  • Abstract:389
  • PDF: 573
  • HTML: 657
  • Cited by: 0
History
  • Received:November 09,2020
  • Revised:March 22,2021
  • Online: September 23,2021
Article QR Code