Effects of Warming on Biomass Allocation Patterns and Nutrient Accumulations of Four Dominant Tree Species in Mixed Forest of Dinghushan, China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [68]
  • | | | |
  • Comments
    Abstract:

    In order to understand the effects of future global warming on species composition of forest ecosystems in the south subtropical region, the biomass allocation patterns and nutrient accumulations of four dominant tree species, such as Schima superba, Syzygium rehderianum, Castanopsis hystrix and Pinus massoniana, were studied under simulated warming by translocating model forest from high altitude to low altitude in Dinghushan, Guangdong. The results showed that warming increases the average atmospheric temperature by (1.28±0.60)℃, and the average soil temperature by (1.04±0.30)℃. For Schima superba and P. massoniana under warming for 6 years, the height significantly increased by 83.0% and 52.1%, and basal diameter by 37.1% and 76.9%, respectively, and the stem mass ratio significantly increased, but the ratios of root mass, leaf biomass and root to shoot significantly decreased, as well as nutrient accumulations increased significantly by 100.3% and 185.7%, respectively. However, warming had no significant effect on the height, basal diameter, biomass allocation patterns, and nutrient accumulations of Syzygium rehderianum and C. hystrix. Therefore, the effects of 6-year warming on biomass allocation pattern and nutrient accumulation were different among four dominant tree species. Schima superba and P. massoniana might have strong adaptability under long-term warming due to their high biomass and nutrient accumulation. These differences might have a potential impact on community structure and function in subtropical mixed forests in China.

    Reference
    [1] IPCC. Climate Change 2018:Special Report on Global Warming of 1.5℃[M]. Cambridge:Cambridge University Press, 2018:32.
    [2] ZHAO X Q, HUANG J, LU J, et al. Study on the influence of soil micro-bial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicol Environ Saf, 2019, 170:218-226. doi:10.1016/j.ecoenv.2018.11.136.
    [3] ZHAO J X, LUO T X, WEI H X, et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respi-ration in a Tibetan alpine steppe[J]. Agric For Meteorol, 2019, 279:107761. doi:10.1016/j.agrformet.2019.107761.
    [4] CHEN F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus addi-tions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree Physiol, 2015, 35(10):1106-1117. doi:10.1093/treephys/tpv076.
    [5] Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993. doi:10.1126/science.1201609.
    [6] Cleveland C C, Townsend A R, Taylor P, et al. Relation-ships among net primary productivity, nutrients and climate in tropical rain forest:A pan-tropical analysis[J]. Ecol Lett, 2011, 14(9):939-947. doi:10.1111/j.1461-0248.2011.01658.x.
    [7] Dusenge M E, Way D A. Warming puts the squeeze on photo-synthesis-lessons from tropical trees[J]. J Exp Bot, 2017, 68(9):2073-2077. doi:10.1093/jxb/erx114.
    [8] Mau A C, Reed S C, Wood T E, et al. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis[J]. Forests, 2018, 9(1):47. doi:10.3390/f9010047.
    [9] Allen C D, Breshears D D, McDowell N G. On undere-stimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene[J]. Ecosphere, 2015, 6(8):1-55. doi:10.1890/ES15-00203.1.
    [10] Duan H L, Huang G M, Zhou S X, et al. Dry mass production, allocation patterns and water use efficiency of two conifers with different water use strategies under elevated[CO2], warming and drought con-ditions[J]. Eur J For Res, 2018, 137(5):605-618. doi:10.1007/s10342-018-1128-x.
    [11] Cavaleri M A, Reed S C, Smith W K, et al. Urgent need for warming experiments in tropical forests[J]. Glob Change Biol, 2015, 21(6):2111-2121. doi:10.1111/gcb.12860.
    [12] Wu T, Liu S Z, Lie Z Y, et al. Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species[J]. For Ecol Manag, 2020, 461:117952. doi:10.1016/j.foreco.2020.117952.
    [13] Qi Y L, Wei W, Chen C G, et al. Plant root-shoot biomass allocation over diverse biomes:A global synthesis[J]. Glob Ecol Conserv, 2019, 18:e00606. doi:10.1016/j.gecco.2019.e00606.
    [14] Kasurinen A, Koikkalainen K, Anttonen M J, et al. Root morphology, mycorrhizal roots and extramatrical mycelium growth in silver birch (Betula pendula Roth) genotypes exposed to experimental warming and soil moisture manipulations[J]. Plant Soil, 2016, 407:341-353. doi:10.1007/s11104-016-2891-4.
    [15] Wang P, Heijmans M M P D, Mommer L J, et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature[J]. Environ Res Lett, 2016, 11:055003. doi:10.1088/1748-9326/11/5/055003.
    [16] Yu L, Song M Y, Xia Z C, et al. Elevated temperature differently affects growth, photosynthetic capacity, nutrient absorption and leaf ultrastructure of Abies faxoniana and Picea purpurea under intra- and interspecific competition[J]. Tree Physiol, 2019, 39(8):1342-1357. doi:10.1093/treephys/tpz044.
    [17] Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126:543-562. doi:10.1007/s004420000544.
    [18] AKAJI Y, Inoue T, Tomimatsu H, et al. Photosynthesis, respi-ration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature[J]. Trees, 2019, 33:1041-1049. doi:10.1007/s00468-019-01840-7.
    [19] Wang L, Niu K C, Yang Y H, et al. Patterns of above- and belowground biomass allocation in China's grasslands:Evidence from individual-level observations[J]. Sci China Life Sci, 2010, 53(7):851-857. doi:10.1007/s11427-010-4027-z.王亮, 牛克昌, 杨元合, 等. 中国草地生物量地上-地下分配格局:基于个体水平的研究[J]. 中国科学:生命科学, 2010, 40(7):642-649.
    [20] Ruiz-Vera U M, Siebers M, Gray S B, et al. Global warming can negate the expected CO2 stimulation in photosynthesis and produc-tivity for soybean grown in the midwestern United States[J]. Plant Biol, 2013, 162:410-423. doi:10.1104/pp.112.211938.
    [21] Li X J, Liu X F, Lin C F, et al. Effects of experimental soil warming on plant biomass allocation during the early stages of succession in a subtropical forest in China[J]. Acta Ecol Sin, 2017, 37(1):25-34. doi:10.5846/stxb201607261529.李晓杰, 刘小飞, 林成芳, 等. 土壤增温调节中亚热带森林更新初期植物生物量分配格局[J]. 生态学报, 2017, 37(1):25-34. doi:10.5846/stxb201607261529.
    [22] Zeng Z, Huan H H, Liu G, et al. Effects of elevated temperature and CO2 concentration on growth and leaf quality of Morus alba seedlings[J]. Chin J Appl Ecol, 2016, 27(8):2445-2451. doi:10.13287/j.1001-9332.201608.022.曾贞, 郇慧慧, 刘刚, 等. 增温和升高CO2浓度对桑树幼苗的生长和叶片品质的影响[J]. 应用生态学报, 2016, 27(8):2445-2451. doi:10.13287/j.1001-9332.201608.022.
    [23] Zhang J W, Dong S T, Wang K J, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize[J]. Chin J Appl Ecol, 2008, 19(1):81-86.张吉旺, 董树亭, 王空军, 等. 大田增温对夏玉米光合特性的影响[J]. 应用生态学报, 2008, 19(1):81-86.
    [24] Xu Z F, Hu T X, Zhang L, et al. Short-term gas exchange responses of Betula utilis to simulated global warming in a timber-line ecotone, eastern Tibetan Plateau, China[J]. Chin J Plant Ecol, 2010, 34(3):263-270. doi:10.3773/j.issn.1005-264x.2010.03.003.徐振锋, 胡庭兴, 张力, 等. 青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应[J]. 植物生态学报, 2010, 34(3):263-270. doi:10.3773/j.issn.1005-264x.2010.03.003.
    [25] Xu M H, Liu M, Zhai D T, et al. Dynamic changes in biomass and its relationship with environmental factors in an alpine meadow on the Qinghai-Tibetan Plateau, based on simulated warming experiments[J]. Acta Ecol Sin, 2016, 36(18):5759-5767. doi:10.5846/stxb201504170794.徐满厚, 刘敏, 翟大彤, 等. 青藏高原高寒草甸生物量动态变化及与环境因子的关系——基于模拟增温实验[J]. 生态学报, 2016, 36(18):5759-5767. doi:10.5846/stxb201504170794.
    [26] Kudo G, Suzuki S. Warming effects on growth, production, and vegetation structure of alpine shrubs:A five-year experiment in northern Japan[J]. Oecologia, 2003, 135:280-287. doi:10.1007/s00442-003-1179-6.
    [27] Li J R, Liu Z H. High-cold meadow plants respond to long-term warming[J]. Qinghai Pratacult, 2017, 26(3):13-18,24. doi:10.3969/j. issn.1008-1445.2017.03.003.李京蓉, 刘泽华. 高寒草甸植物对长期增温的响应[J]. 青海草业, 2017, 26(3):13-18,24. doi:10.3969/j.issn.1008-1445.2017.03.003.
    [28] de Boer H C, Deru J G C, Hoekstra N J, et al. Strategic timing of nitrogen fertilization to increase root biomass and nitrogen-use efficiency of Lolium perenne L.[J]. Plant Soil, 2016, 407:81-90. doi:10.1007/s11104-016-2917-y.
    [29] Rogers C W, Dari B, HU G S, et al. Dry matter production, nutrient accumulation, and nutrient partitioning of barley[J]. J Plant Nutri Soil Sci, 2019, 182(3):367-373. doi:10.1002/jpln.201800336.
    [30] Kuster T M, Schleppi P, Hu B, et al. Nitrogen dynamics in oak model ecosystems subjected to air warming and drought on two different soils[J]. Plant Biol, 2013, 15(S1):220-229. doi:10.1111/j. 1438-8677.2012.00686.x.
    [31] Zhao S C, Xu X P, Wei D, et al. Soybean yield, nutrient uptake and stoichiometry under different climate regions of northeast China[J]. Sci Rep, 2020, 10(1):8431. doi:10.1038/s41598-020-65447-6.
    [32] NISHITANI S, ISHIDA A, NAKAMURA T, et al. Functional differ-rences in seasonally absorbed nitrogen in a winter-green perennial herb[J]. Roy Soc Open Sci, 2020, 7(1):190034. doi:10.1098/rsos.190034.
    [33] Dawes M A, Schleppi P, Hättenschwiler S, et al. Soil warming opens the nitrogen cycle at the alpine treeline[J]. Glob Change Biol, 2017, 23(1):421-434. doi:10.1111/gcb.13365.
    [34] Hou Y, Wang K Y, Zhang C. Effects of elevated CO2 concen-tration and temperature on nutrient accumulation and allocation in Betula albo-sinensis seedlings[J]. Chin J Appl Ecol, 2008, 19(1):13-19.侯颖, 王开运, 张超. 大气二氧化碳浓度与温度升高对红桦幼苗养分积累和分配的影响[J]. 应用生态学报, 2008, 19(1):13-19.
    [35] Wang J Q, Li L Q, LAM S K, et al. Changes in nutrient uptake and utilization by rice under simulated climate change conditions:A 2-year experiment in a paddy field[J]. Agric For Meteorol, 2018, 250-251:202-208. doi:10.1016/j.agrformet.2017.12.254.
    [36] WANG J, YU B Y, HUANG J G. Xylem formation and response to climate of Castanea henryi in Dinghushan Mountain[J]. J Trop Subtrop Bot, 2020, 28(5): 445–454. doi: 10.11926/jtsb.4204. 王婕, 余碧云, 黄建国. 鼎湖山锥栗木质部形成及其对气候的响应 [J]. 热带亚热带植物学报, 2020, 28(5): 445–454. doi: 10.11926/jtsb.4204.
    [37] LIU J X, LI Y L, LIU S Z, et al. An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems [J]. Chin J Plant Ecol, 2013, 37(6): 558–565. doi: 10.3724/ SP.J.1258.2013.00057. 刘菊秀, 李跃林, 刘世忠, 等. 气温上升对模拟森林生态系统影响实验的介绍 [J]. 植物生态学报, 2013, 37(6): 558–565. doi: 10.3724/ SP.J.1258.2013.00057.
    [38] Li X, Lie Z Y, Wu T, et al. Effect of warming on nutrients concen-trations and stoichiometry of 4 tree species in south subtropical mixed forest[J]. Ecol Environ Sci, 2019, 28(5):890-897. doi:10.16258/j.cnki.1674-5906.2019.05.005.李旭, 列志旸, 吴婷, 等. 增温对南亚热带混交林4个树种养分含量及化学计量的影响[J]. 生态环境学报, 2019, 28(5):890-897. doi:10.16258/j.cnki.1674-5906.2019.05.005.
    [39] BREMNER J M, MULVANEY C S. Nitrogen-total [M]// PAGE A L, MILLER R H, KEENEY D R. Methods of Soil Analysis:Part 2. Chemical and Microbiological Properties:Agronomy Monograph No. 9.2nd ed. Madison, Wisconsin:American Society of Agronomy, 1982:595-624.
    [40] Li Y Y, Liu J X, Zhou G Y, et al. Warming effects on photosynthesis of subtropical tree species:A translocation experiment along an alti-tudinal gradient[J]. Sci Rep, 2016, 6:24895. doi:10.1038/srep24895.
    [41] Drake J E, Tjoelker M G, Varhammar A, et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance[J]. Glob Change Biol, 2018, 24(6):2390-2402. doi:10.1111/gcb.14037.
    [42] Butler S M, Melillo J M, Johnson J E, et al. Soil warming alters nitrogen cycling in a New England forest:Implications for eco-system function and structure[J]. Oecologia, 2012, 168(3):819-828. doi:10.1007/s00442-011-2133-7.
    [43] Liu J X, Liu S E, Li Y Y. Warming effects on the decomposition of two litter species in model subtropical forests[J]. Plant Soil, 2017, 420(1/2):277-287. doi:10.1007/s11104-017-3392-9.
    [44] Li Y Y, Zhou G Y, Liu J X. Different growth and physiological responses of six subtropical tree species to warming[J]. Front Plant Sci, 2017, 8:1511. doi:10.3389/fpls.2017.01511.
    [45] Tang X L, Wang Y P, Zhou G Y, et al. Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in southern China[J]. Plant Ecol, 2011, 212(8):1385-1395. doi:10.1007/s11258-011-9914-2.
    [46] Crous K Y, Quentin A G, Lin Y S, et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming[J]. Glob Change Biol, 2013, 19(12):3790-3807. doi:10.1111/gcb.12314.
    [47] Bowman D M J S, Williamson G J, Keenan R J, et al. A warmer world will reduce tree growth in evergreen broadleaf forests:Evidence from Australian temperate and subtropical eucalypt forests[J]. Glob Ecol Biogeogr, 2014, 23(8):925-934. doi:10.1111/geb.12171.
    [48] Sullivan M J P, Lewis S L, Affum-Baffoe K, et al. Long-term thermal sensitivity of Earth's tropical forests[J]. Science, 2020, 368(6493):869-874. doi:10.1126/science.aaw7578.
    [49] LIN W Q, FANG Y R, XUE L. Forest biomass allocation vary with temperature in five forest types of China[J]. Int J Agric Biol, 2019, 21:1043-1048.
    [50] YE W M, XIONG D C, YAng Z J, et al. Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings[J]. Acta Ecol Sin, 2019, 39(7):2501-2509. doi:10.5846/stxb 201801150110.叶旺敏, 熊德成, 杨智杰, 等. 模拟增温对杉木幼树生长和光合特性的影响[J]. 生态学报, 2019, 39(7):2501-2509. doi:10.5846/stxb 201801150110.
    [51] Wang G G, Bauerle W L, Mudder B T. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings[J]. For Ecol Manag, 2006, 226(1-3):173-180. doi:10.1016/j.foreco.2005.12.063.
    [52] Wan S Q, Hui D F, Wallace L, et al. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie[J]. Glob Biogeochem Cycles, 2005, 19(2):GB2014. doi:10.1029/2004GB002315.
    [53] Niu S L, Wu M Y, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe[J]. New Phytol, 2008, 177(1):209-219. doi:10.1111/j.1469-8137.2007.02237.x.
    [54] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots:Meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1):30-50. doi:10.1111/j.1469-8137.2011.03952.x.
    [55] Ming A G, Liu S R, Mo H H, et al. Comparison of carbon storage in pure and mixed stands of Castanopsis hystrix and Cunninghamia lanceolata in subtropical China[J]. Acta Ecol Sin, 2016, 36(1):244-251. doi:10.5846/stxb201405211041.明安刚, 刘世荣, 莫慧华, 等. 南亚热带红锥、杉木纯林与混交林碳贮量比较[J]. 生态学报, 2016, 36(1):244-251. doi:10.5846/stxb 201405211041.
    [56] Wu M, Deng P, Zhao Y, et al. Vertical distribution and physio-logical senescence characteristics of fine roots in Castanopsis hystrix Miq. plantations at different ages[J]. Chin J Ecol, 2019, 38(9):2622-2629. doi:10.13292/j.1000-4890.201909.023.吴敏, 邓平, 赵英, 等. 不同林龄红锥人工林细根垂直分布和衰老生理特征[J]. 生态学杂志, 2019, 38(9):2622-2629. doi:10.13292/j. 1000-4890.201909.023.
    [57] Litton C M, Giardina C P, Freeman K R, et al. Impact of mean annual temperature on nutrient availability in a tropical montane wet forest[J]. Front Plant Sci, 2020, 11:784. doi:10.3389/fpls.2020.00784.
    [58] Lie Z Y, Lin W, Huang W J, et al. Warming changes soil N and P supplies in model tropical forests[J]. Biol Fert Soils, 2019, 55(7):751-763. doi:10.1007/s00374-019-01382-7.
    [59] Guo J P, Gao S H. Impacts of CO2 enrichment and soil drought on C, N accumulation and distribution in Stipa baicalensis[J]. J Soil Water Conserv, 2005, 19(2):118-121. doi:10.3321/j.issn:1009-2242.2005.02.031.郭建平, 高素华. 高CO2浓度和土壤干旱对贝加尔针茅C, N积累和分配的影响[J]. 水土保持学报, 2005, 19(2):118-121. doi:10.3321/j. issn:1009-2242.2005.02.031.
    [60] Liu J X, Li Y Y, Xu Y, et al. Phosphorus uptake in four tree species under nitrogen addition in subtropical China[J]. Environ Sci Pollut Res Int, 2017, 24(24):20005-20014. doi:10.1007/s11356-017-9633-x.
    [61] Wu G L, Liu H, Hua L, et al. Differential responses of stomata and photosynthesis to elevated temperature in two co-occurring subtropical forest tree species[J]. Front Plant Sci, 2018, 9:467. doi:10.3389/fpls. 2018.00467.
    [62] Restaino C M, Peterson D L, Littell J. Increased water deficit decreases douglas fir growth throughout western US forests[J]. Proc Natl Acad Sci USA, 2016, 113(34):9557-9562. doi:10.1073/pnas. 1602384113.
    [63] Zhang X L, Manzanedo R D, D'Orangeville L, et al. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests[J]. Glob Change Biol, 2019, 25(10):3462-3471. doi:10.1111/gcb.14749.
    [64] Zhang H W, Bai X M, Fan J H, et al. Effect of water treatments on biomass, accumulation and allocation of nitrogen and phosphorus of Poa pratensis[J]. Grassland Turf, 2018, 38(5):8-15. doi:10.3969/j.issn.1009-5500.2018.05.002.张浩玮, 白小明, 樊敬辉, 等. 不同水分处理对草地早熟禾生物量及N、P积累与分配的影响[J]. 草原与草坪, 2018, 38(5):8-15. doi:10.3969/j.issn.1009-5500.2018.05.002.
    [65] Wang C R, Li S Z, Yang X Y. Competitive patterns of pioneer species at different restoration levels in the subtropical red soil erosion and degradation region[J]. Chin J Appl Environ Biol, 2019, 25(2):239-245. doi:10.19675/j.cnki.1006-687x.2018.05044.王从容, 李守中, 杨贤宇. 亚热带红壤侵蚀退化区不同恢复水平生境内先锋树种竞争特征[J]. 应用与环境生物学报, 2019, 25(2):239-245. doi:10.19675/j.cnki.1006-687x.2018.05044.
    [66] Cao J, Liu H Y, Zhao B, et al. Species-specific and elevation-differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid North-east Asia[J]. For Ecol Manag, 2019, 448:76-84. doi:10.1016/j.foreco. 2019.05.065.
    [67] SCHIPPERS P, STERCK F, VLAM M, et al. Tree growth variation in the tropical forest:Understanding effects of temperature, rainfall and CO2[J]. Glob Change Biol, 2015, 21(7):2749-2761. doi:10.1111/gcb.12877.
    [68] GENNARETTI F, GEA-IZQUIERDO G, BOUCHER E, et al. Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest [J]. Biogeosciences, 2017, 14(21): 4851–4866. doi: 10.5194/bg-14-4851-2017.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

谭钠丹,李旭,吴婷,列志旸,刘旭军,刘世忠,陈平,刘菊秀.增温对鼎湖山混交林中4种优势树种生物量分配和养分积累的影响[J].热带亚热带植物学报,2021,29(4):389~400

Copy
Share
Article Metrics
  • Abstract:1787
  • PDF: 690
  • HTML: 419
  • Cited by: 0
History
  • Received:October 22,2020
  • Revised:January 05,2021
  • Online: July 28,2021
Article QR Code