Seed Germination Traits of Invasive Weed Sorghum halepense in Hainan Island
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to reveal the effect of environment condition on seed germination of Sorghum halepense, its germination characters were studied in Hainan Island. The results showed that the germination rate of S. halepense seeds was high with more than 85%, and the germination time was the shortest (2.64 d) under day and night temperature at 35℃/25℃. The seeds treated with 98% concentrated sulfuric acid could improve germination rate. The seed germination time was shortened treated with concentrated sulfuric acid, gibberellin and grinding. The seeds on the soil surface had the highest germination rate, and germination rate decreased and germination time increased with burial depth. Among different treatments, such as temperature, dormancy breaking and burial depth, there were no significant differences in germination rate and germination time of S. halepense seeds between outbreaking and non-outbreaking regions. Therefore, environmental conditions could influence germination of S. halepense seeds, and the seeds under high temperature and on the soil surface had high germination rate and short germination time. Seeds of S. halepense in Hainan Island had high germination rate and wide ecological breadth of germination, which was one of important reasons for its sudden disaster in Hainan in recent years. So, the strengthen control before flowering of S. halepense, reduce seed maturation and dissemination.

    Reference
    [1] MACK R N, SIMBERLOFF D, LONSDALE W M, et al. Biotic invasions:Causes, epidemiology, global consequences, and control[J]. Ecol Appl, 2000, 10(3):689-710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2.
    [2] HUANG Q Q, WU J M, BAI Y Y, et al. Identifying the most noxious invasive plants in China:Role of geographical origin, life form and means of introduction[J]. Biodiv Conserv, 2009, 18(2):305-316. doi:10.1007/s10531-008-9485-2.
    [3] VAN KLEUNEN M, DAWSON W, ESSL F, et al. Global exchange and accumulation of non-native plants[J]. Nature, 2015, 525(7567):100-103. doi:10.1038/nature14910.
    [4] PAINI D R, SHEPPARD A W, COOK D C, et al. Global threat to agriculture from invasive species[J]. Proc Natl Acad Sci USA, 2016, 113(27):7575-7579. doi:10.1073/pnas.1602205113.
    [5] LI Q, CHEN Q, HE F R, et al. Arbuscular mycorrhizal fungi promote the growth of Wedelia trilobata and the absorption of insoluble phosphorus[J]. J Trop Subtrop Bot, 2020, 28(4):339-346. doi:10. 11926/jtsb.4170. 李琴, 陈琪, 贺芙蓉, 等. 丛枝菌根真菌促进南美蟛蜞菊生长及对难溶磷的吸收[J]. 热带亚热带植物学报, 2020, 28(4):339-346. doi:10.11926/jtsb.4170.
    [6] HUANG Q Q, SHEN Y D, LI X X, et al. Research progress on the distribution and invasiveness of alien invasive plants in China[J]. Ecol Environ Sci, 2012, 21(5):977-985. doi:10.3969/j.issn.1674-5906.2012. 05.032. 黄乔乔, 沈亦德, 李晓霞, 等. 外来入侵植物在中国的分布及入侵能力研究进展[J]. 生态环境学报, 2012, 21(5):977-985. doi:10. 3969/j.issn.1674-5906.2012.05.032.
    [7] VAN KLEUNEN M, WEBER E, FISCHER M. A meta-analysis of trait differences between invasive and non-invasive plant species[J]. Ecol Lett, 2010, 13(2):235-245. doi:10.1111/j.1461-0248.2009.01418.x.
    [8] BURNS J H. Demographic performance predicts invasiveness of species in the Commelinaceae under high-nutrient conditions[J]. Ecol Appl, 2008, 18(2):335-346. doi:10.1890/07-0568.1.
    [9] RUPRECHT E, FENESI A, NIJS I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species[J]. Biol Invas, 2014, 16(7):1359-1372. doi:10.1007/s10530-013-0574-0.
    [10] ZHANG J L, SIEMANN E, TIAN B L, et al. Differences in seed properties and germination between native and introduced populations of Triadica sebifera[J]. J Plant Ecol, 2020, 13(1):70-77. doi:10. 1093/jpe/rtz048.
    [11] TABASSUM S, LEISHMAN M R. Have your cake and eat it too:Greater dispersal ability and faster germination towards range edges of an invasive plant species in eastern Australia[J]. Biol Invas, 2018, 20(5):1199-1210. doi:10.1007/s10530-017-1620-0.
    [12] QIN R M, ZHENG Y L, VALIENTE-BANUET A, et al. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader[J]. New Phytol, 2013, 197(3):979-988. doi:10.1111/nph.12071.
    [13] ZHENG Y L, FENG Y L, ZHANG L K, et al. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader[J]. New Phytol, 2015, 205(3):1350-1359. doi:10.1111/nph.13135.
    [14] ZHOU C Q, TANG S C, PAN Y M, et al. Effects of light and temperature on germination of heteromorphic achenes of Bidens frondosa L.[J]. J Trop Subtrop Bot, 2015, 23(6):662-668. doi:10.11926/j.issn. 1005-3395.2015.06.010. 周超群, 唐赛春, 潘玉梅, 等. 光照和温度对入侵植物大狼耙草异型瘦果萌发的影响[J]. 热带亚热带植物学报, 2015, 23(6):662-668. doi:10. 11926/j.issn.1005-3395.2015.06.010.
    [15] DAVIS M A, GRIME J P, THOMPSON K. Fluctuating resources in plant communities:A general theory of invasibility[J]. J Ecol, 2000, 88(3):528-534. doi:10.1046/j.1365-2745.2000.00473.x.
    [16] MONAGHAN N. The biology of Johnson grass (Sorghum halepense)[J]. Weed Res, 1979, 19(4):261-267. doi:10.1111/j.1365-3180.1979. tb01536.x.
    [17] ZHANG Q, LIN J C, QIANG S. Analysis of the importance of quarantining based on the port checking out ratio for Johnson grass[J]. J Anhui Agric Sci, 2004, 32(3):448-451. doi:10.13989/j.cnki.0517-6611.2004.03.028. 张强, 林金成, 强胜. 检疫口岸假高粱检出率分析及其防治[J]. 安徽农业科学, 2004, 32(3):448-451. doi:10.13989/j.cnki.0517-6611. 2004.03.028.
    [18] ROSALES-ROBLES E, CHANDLER J M, WU H I, et al. A model to predict the influence of temperature on rhizome Johnson grass (Sorghum halepense) development[J]. Weed Sci, 2003, 51(3):356-362. doi:10.1614/0043-1745(2003)051[0356:AMTPTI]2.0.CO;2.
    [19] WOOD M L, MURRAY D S, BANKS J C, et al. Johnson grass (Sorghum halepense) density effects on cotton (Gossypium hirsutum) harvest and economic value[J]. Weed Technol, 2002, 16(3):495-501. doi:10.1614/0890-037X(2002)016[0495:JSHDEO]2.0.CO;2.
    [20] MITSKAS M B, TSOLIS C E, ELEFTHEROHORINOS I G, et al. Interference between corn and Johnsongrass (Sorghum halepense) from seed or rhizomes[J]. Weed Sci, 2003, 51(4):540-545. doi:10.1614/0043-1745(2003)051[0540:IBCAJS]2.0.CO;2.
    [21] GHOSHEH H Z, HOLSHOUSER D L, CHANDLER J M. The critical period of Johnson grass (Sorghum halepense) control in field corn (Zea mays)[J]. Weed Sci, 1996, 44(4):944-947. doi:10.1017/S0043174500094960.
    [22] HUANG S G, CAI R J, ZHONG X S, et al. Tests of several kinds of herbicides for controlling Sorghum halepense (L.)[J]. Plant Quarantine, 2002, 16(6):341-344. doi:10.19662/j.cnki.issn1005-2755.2002.06.008. 黄胜光, 蔡荣金, 钟学伸, 等. 几种除草剂防除假高粱药效试验[J]. 植物检疫, 2002, 16(6):341-344. doi:10.19662/j.cnki.issn1005-2755. 2002.06.008.
    [23] FERRELL J A, EARL H J, VENCILL W K. The effect of selected herbicides on CO2 assimilation, chlorophyll fluorescence, and stomatal conductance in Johnson grass (Sorghum halepense L.)[J]. Weed Sci, 2003, 51(1):28-31. doi:10.1614/0043-1745(2003)051[0028:TEOSHO] 2.0.CO;2.
    [24] ZHENG L, FENG Y L. Allelopathic effects of Eupatorium adenophorum Spreng. on seed germination and seedling growth in ten herbaceous species[J]. Acta Ecol Sinica, 2005, 25(10):2782-2787. doi: 10.3321/j.issn:1000-0933.2005.10.046. 郑丽, 冯玉龙. 紫茎泽兰叶片化感作用对10种草本植物种子萌发和幼苗生长的影响[J]. 生态学报, 2005, 25(10):2782-2787. doi:10. 3321/j.issn:1000-0933.2005.10.046.
    [25] WEI S H, ZHANG C X, LI C H, et al. Seed germination behavior of Johnson grass (Sorghum halepense)[J]. Sci Agric Sin, 2008, 41(1):116-121. doi:10.3864/j.issn.0578-1752.2008.01.015. 魏守辉, 张朝贤, 黎春花, 等. 外来恶性杂草假高粱种子萌发特性研究[J]. 中国农业科学, 2008, 41(1):116-121. doi:10.3864/j.issn. 0578-1752.2008.01.015.
    [26] LARIOS E, BÚRQUEZ A, BECERRA J X, et al. Natural selection on seed size through the life cycle of a desert annual plant[J]. Ecology, 2014, 95(11):3213-3220. doi:10.1890/13-1965.1.
    [27] GUO Y Y, LIU H J, YU H Y, et al. Effects of seed size and drought stress on growth of Xanthoceras sorbifolia seedlings[J]. J NW Agric For Univ (Nat Sci), 2016, 44(8):143-147. doi:10.13207/j.cnki.jnwafu. 2016.08.021. 郭有燕, 刘宏军, 余宏远, 等. 种子大小和干旱胁迫对文冠果幼苗生长的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(8):143-147. doi:10.13207/j.cnki.jnwafu.2016.08.021.
    [28] TREMAYNE M A, RICHARDS A J. Seed weight and seed number affect subsequent fitness in outcrossing and selfing Primula species[J]. New Phytol, 2000, 148(1):127-142. doi:10.1046/j.1469-8137.2000. 00738.x.
    [29] MAO P L, GUO L M, GAO Y X, et al. Effects of seed size and sand burial on germination and early growth of seedlings for coastal Pinus thunbergii Parl. in the northern Shandong Peninsula, China[J]. Forests, 2019, 10(3):281. doi:10.3390/f10030281.
    [30] HAMILTON M A, MURRAY B R, CADOTTE M W, et al. Life-history correlates of plant invasiveness at regional and continental scales[J]. Ecol Lett, 2005, 8(10):1066-1074. doi:10.1111/j.1461-0248. 2005.00809.x.
    [31] HUANG F F, PENG S L, CHEN B M, et al. Rapid evolution of dispersal-related traits during range expansion of an invasive vine Mikania micrantha[J]. Oikos, 2015, 124(8):1023-1030. doi:10.1111/oik.01820.
    [32] HUANG Q Q, BURD M, FAN Z W. Resource allocation and seed size selection in perennial plants under pollen limitation[J]. Amer Nat, 2017, 190(3): 430–441. doi: 10.1086/692543.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王玮倩,李晓霞,王亚,黄乔乔.海南省入侵杂草假高粱种子萌发特性研究[J].热带亚热带植物学报,2021,29(3):285~292

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2020
  • Revised:October 16,2020
  • Online: May 26,2021
Article QR Code