Effects of Long-term Nitrogen and Phosphorus Additions on Soil Enzyme Activities Related N and P Cycle in Two Plantations in South China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • | | | |
  • Comments
    Abstract:

    Nitrogen (N) deposition has been increasing during recent decades and may affect supply of soil nutrients and resources acquired by organism. Soil enzyme activity is an important indicator for reflecting the nutrient acquisition of plants and microorganisms. To explore the effects of long-term N and phosphorus (P) additions on activities of N and P cycling enzymes in subtropical forest soil, two plantations of Acacia auriculiformis and Eucalyptus urophylla in south China were applied N and P fertilizers for 8 years, each with 50 kg/(hm2·a), and then the activities of soil enzymes, including P-cycling enzymes[phosphomonolipase (PME) and phosphodiesterase (PDE)] and N-cycling enzymes[β-1,4-acetylglucosaminidase (NAG) and l-leucine aminopeptidase (LAP)] were measured. The results showed that N addition had no significant effect on activities of soil N and P cycling enzymes. P and N+P additions had significant negative effects on activities of PME and PDE, but which had no effect on activities of NAG and LAP. The growth of soil microorganisms and plants of subtropical plantations in south China may be limited by P rather than by N, and P fertilization could alleviate soil P limitation on plants and microorganisms. Therefore, these would provide an important insight for forest management in the future.

    Reference
    [1] CHEN Y, RANDERSON J T, VAN DER WERF G R, et al. Nitrogen deposition in tropical forests from savanna and deforestation fires[J]. Glob Change Biol, 2010, 16(7):2024-2038. doi:10.1111/j.1365-2486. 2009.02156.x.
    [2] BOY J, ROLLENBECK R, VALAREZO C, et al. Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador[J]. Glob Biogeochem Cycl, 2008, 22(4):GB4011. doi:10.1029/2007GB003158.
    [3] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462. doi:10.1038/nature 11917.
    [4] HERRMANN M, PUST J, POTT R. Leaching of nitrate and ammonium in heathland and forest ecosystems in northwest Germany under the influence of enhanced nitrogen deposition[J]. Plant Soil, 2005, 273(1-2):129-137. doi:10.1007/s11104-004-7246-x.
    [5] VITOUSEK P M, ABER J D, HOWARTH R W, et al. Human alteration of the global nitrogen cycle:Sources and consequences[J]. Ecol Appl, 1997, 7(3):737-750. doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2.
    [6] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892. doi:10.1126/science. 1136674.
    [7] GALLOWAY J N. The global nitrogen cycle:Changes and consequences[J]. Environ Pollut, 1998, 102(suppl 1):15-24. doi:10.1016/S0269-7491(98)80010-9.
    [8] ENGARDT M, SIMPSON D, SCHWIKOWSKI M, et al. Deposition of sulphur and nitrogen in Europe 1900-2050:Model calculations and comparison to historical observations[J]. Tellus B Chem Phys Metorol, 2017, 69(1):1328945. doi:10.1080/16000889.2017.1328945.
    [9] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nat Geosci, 2019, 12(6):424-429. doi:10.1038/s41561-019-0352-4.
    [10] ZHU J X, HE N P, WANG Q F, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J]. Sci Total Environ, 2015, 511:777-785. doi:10.1016/j.scitotenv.2014.12.038.
    [11] MAO Q G, LU X K, ZHOU K J, et al. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest[J]. Geoderma, 2017, 285:57-63. doi:10.1016/j.geoderma.2016. 09.017.
    [12] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to longterm high nitrogen deposition in an N-rich tropical forest[J]. Proc Natl Acad Sci USA, 2018, 115(20):5187-5192. doi:10.1073/pnas.1720777115.
    [13] LU X K, MO J M, ZHANG W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China:An overview[J]. J Trop Subtrop Bot, 2019, 27(5):500-522. doi:10.11926/jtsb.4113. 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500-522. doi:10.11926/jtsb.4113.
    [14] VITOUSEK P M, SANFORD JR R L. Nutrient cycling in moist tropical forest[J]. Ann Rev Ecol Syst, 1986, 17(1):137-167. doi:10. 1146/annurev.es.17.110186.001033.
    [15] PANT H K, WARMAN P R. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases[J]. Biol Fertil Soils, 2000, 30(4):306-311. doi:10.1007/s003740050008.
    [16] MORI T, IMAI N, YOKOYAMA D, et al. Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen-acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia[J]. Soil Sci Plant Nutr, 2018, 64(5):554-557. doi:10.1080/00380768.2018.1498286.
    [17] WANG C, MORI T, MAO Q G, et al. Long-term phosphorus addition downregulates microbial investments on enzyme productions in a mature tropical forest[J]. J Soils Sediments, 2019, 20(2):921-930. doi:10.1007/s11368-019-02450-z.
    [18] ZHENG M H, HUANG J, CHEN H, et al. Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China[J]. Eur J Soil Biol, 2015, 68:77-84. doi:10.1016/j.ejsobi.2015.03.010.
    [19] LI P H, WANG Q, REN H. The simulation on carbon stocks and dynamics in Acacia mangium plantation ecosystem[J]. J Trop Subtrop Bot, 2009, 17(5):494-501. doi:10.3969/j.issn.1005-3395.2009.05.012. 李平衡, 王权, 任海. 马占相思人工林生态系统的碳格局及其动态模拟[J]. 热带亚热带植物学报, 2009, 17(5):494-501. doi:10.3969/j.issn.1005-3395.2009.05.012.
    [20] WANG W, XU J M, LI G Y, et al. Comprehensive selection on growth, stem form of Eucalyptus urophylla clones and resistance to Leptocybe invasa[J]. J Trop Subtrop Bot, 2011, 19(5):419-424. doi:10.3969/j. issn.1005-3395.2011.05.005. 王伟, 徐建民, 李光友, 等. 尾叶桉无性系生长、干形和抗枝瘿姬小蜂综合选择[J]. 热带亚热带植物学报, 2011, 19(5):419-424. doi:10. 3969/j.issn.1005-3395.2011.05.005.
    [21] WU J P, LIU Z F, WANG X L, et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in south China[J]. Funct Ecol, 2011, 25(4):921-931. doi:10.1111/j.1365-2435.2011.01845.x.
    [22] HUANG J, ZHANG W, ZHU X M, et al. Urbanization in China changes the composition and main sources of wet inorganic nitrogen deposition[J]. Environ Sci Pollut Res, 2015, 22(9):6526-6534. doi:10.1007/s11356-014-3786-7.
    [23] CHEN D M, ZHANG C L, WU J P, et al. Subtropical plantations are large carbon sinks:Evidence from two monoculture plantations in South China[J]. Agric For Meteorol, 2011, 151(9):1214-1225. doi:10. 1016/j.agrformet.2011.04.011.
    [24] ZHANG W, ZHU X M, LIU L, et al. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species[J]. J Geophys Res Biogeo, 2012, 117(G4):G00N16. doi:10.1029/2012J G002094.
    [25] CLEVELAND C C, TOWNSEND A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere[J]. Proc Natl Acad Sci USA, 2006, 103(27):10316-10321. doi:10.1073/pnas.0600989103.
    [26] WANG C, LU X K, MORI T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest[J]. Soil Biol Biochem, 2018, 121:103-112. doi:10.1016/j.soilbio.2018.03.009.
    [27] BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluoro-metric measurement of potential soil extracellular enzyme activities[J]. J Vis Exp, 2013, 17(81):e50961. doi:10.3791/50961.
    [28] JING X, CHEN X, TANG M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests[J]. Sci Total Environ, 2017, 607-608:806-815. doi:10.1016/j.scitotenv. 2017.07.060.
    [29] XU Z W, YU G R, ZHANG X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biol Biochem, 2017, 104:152-163. doi:10.1016/j.soilbio.2016.10.020.
    [30] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001, 82(4):946-954. doi:10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2.
    [31] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]..2019.117613.ochem, 2005, 37(5):937-944. doi:10.1016/j.soilbio.2004.09.014.
    [32] XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biol Biochem, 2018, 123:21-32. doi:10.1016/j.soilbio.2018.05.001.
    [33] GUILBEAULT-MAYERS X, TURNER B L, LALIBERTÉ E. Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species[J]. Ecology, 2020, 101(8):e03090. doi:10.1002/ecy.3090.
    [34] PNG G K, TURNER B L, ALBORNOZ F E, et al. Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability[J]. J Ecol, 2017, 105(5):1246-1255. doi:10.1111/1365-2745.12758.
    [35] CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes:A meta-analysis[J]. Agric Ecosyst Environ, 2018, 252:126-131. doi:10.1016/j.agee.2017. 09.032.
    [36] TURNER B L, WRIGHT S J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest[J]. Biogeochemistry, 2013, 117(1):115-130. doi:10.1007/s10533-013-9848-y.
    [37] MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J]. New Phytol, 2012, 193(3):696-704. doi:10.1111/j.1469-8137. 2011.03967.x.
    [38] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biol Biochem, 2013, 58:216-234. doi:10.1016/j.soilbio.2012. 11.009.
    [39] ZHENG M H, LI D J, LU X, et al. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations[J]. Biogeochemistry, 2016, 131(1):65-76. doi:10.1007%2Fs10533-016-0265-x.
    [40] ZHENG M H, CHEN H, LI D J, et al. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees[J]. Biol Fertil Soils, 2016, 52(5):665-674. doi:10.1007/s00374-016-1109-5.
    [41] LIU L, GUNDERSEN P, ZHANG T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J]. Soil Biol Biochem, 2012, 44(1):31-38. doi:10.1016/j.soilbio.2011.08.017.
    [42] DEMOLING F, OLA N L, BÅÅTH E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils[J]. Soil Biol Biochem, 2008, 40(2):370-379. doi:10.1016/j.soilbio.2007.08.019.
    [43] ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. ISME J, 2010, 4(10):1340-1351. doi:10.1038/ismej.2010.58.
    [44] YOKOYAMA D, IMAI N, KITAYAMA K. Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests[J]. Plant Soil, 2017, 416(1/2):463-476. doi:10.1007/s11104-017-3225-x.
    [45] BLOOM A J, CHAPIN F S, MOONEY H A. Resource limitation in plants:An economic analogy[J]. Ann Rev Ecol Syst, 1985, 16(1):363-392. doi:10.1146/annurev.es.16.110185.002051.
    [46] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biol Biochem, 2007, 39(7):1770-1781. doi:10. 1016/j.soilbio.2007.02.006.
    [47] ZHENG M H, HUANG J, CHEN H, et al. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types[J]. Acta Ecol Sin, 2015, 35(20):6703-6710. doi:10.5846/stxb 201405120970. 郑棉海, 黄娟, 陈浩, 等. 氮、磷添加对不同林型土壤磷酸酶活性的影响[J]. 生态学报, 2015, 35(20):6703-6710. doi:10.5846/stxb201405120970.
    [48] WANG S H, ZHOU K J, MORI T, et al. Effects of phosphorus and nitrogen fertilization on soil arylsulfatase activity and sulfur availability of two tropical plantations in southern China[J]. For Ecol Manag, 2019, 453:117613. doi:10.1016/j.foreco.2019.117613.
    Related
    Cited by
Get Citation

王玉芳,郑棉海,王森浩,毛晋花,莫江明.氮磷添加对华南地区2种人工林土壤氮磷循环酶活性的影响[J].热带亚热带植物学报,2021,29(3):244~250

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 17,2020
  • Revised:September 23,2020
  • Online: May 26,2021
Article QR Code