Chemical Constituents from the Stems of Hibiscus syriacus
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • | | | |
  • Comments
    Abstract:

    In order to understand the chemical constituents of Hibiscus syriacus stem, thirteen copounds were isolated from 85% ethanol extract of its stems by several column chromatographic techniques, such as MPLC- MCI-gel, silica gel, Sephadex LH-20 and preparative HPLC. Based on physicochemical properties and NMR spectral data, their structures were identified as methyl 4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl) ethyl] sinapate (1), 2,6,2ʹ,6ʹ-tetramethoxy-4,4ʹ-bis(2,3-epoxy-1-hydroxypropyl) biphenyl (2), 3,4,5- trimethoxycinnamic acid methyl ester (3), 3,4-dimethoxycinnamic acid methyl ester (4), trans-p-hydroxy- cinnamic acid methyl ester (5), methyl caffeate (6), methyl feruate (7), syringaresinol (8), clemaphenol A (9), (E)-2-methoxy-5-propenylphenyl β-d-glucopyranoside (10), orientin (11), luteolin (12), and apigenin (13). Among them, compounds 1-10 were lignans and compounds 11-13 were flavonoids. Compound 1 was a new natural product, compound 1-12 were isolated from this plant for the first time. Compounds 1-10 at 40 μmol/L did not exhibit good cytotoxic activities to in vitro growth of human leukemia HL-60 cells and human lung cancer A-549 cells.

    Reference
    [1] Editorial Board of Chinese Materia Medica, State Administration of traditional Chinese medicine. Chinese Materia Medica[M]. Shanghai:Shanghai Science and Technology Press, 1999:354-358. 国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海:上海科学技术出版, 1999:354-358.
    [2] WEI Q, JI X Y, XU F, et al. Chemical constituents from leaves of Hibiscus syriacus and their α-glucosidase inhibitory activities[J]. J Chin Med Mat, 2015, 38(5):975-979. doi:10.13863/j.issn1001-4454. 2015.05.022. 卫强, 纪小影, 徐飞, 等. 木槿叶化学成分及抑制α-葡萄糖苷酶活性研究[J]. 中药材, 2015, 38(5):975-979. doi:10.13863/j.issn1001-4454.2015.05.022.
    [3] YANG T, WANG B C, DENG B S, et al. Research on Hibiscus extraction technology and antioxidant[J]. Shandong Chem Ind, 2017, 46(12):24-26. doi:10.3969/j.issn.1008-021X.2017.12.008. 杨涛, 王博诚, 邓碧珊, 等. 木槿提取工艺及抗氧化作用研究[J]. 山东化工, 2017, 46(12):24-26. doi:10.3969/j.issn.1008-021X.2017. 12.008.
    [4] SHEN W X, CUI C, LIU X H, et al. Overview of pharmacological research on Hibiscus syriacus L.[J]. Anim Husband Feed Sci, 2011, 32(11):54-55,60. doi:10.3969/j.issn.1672-5190.2011.11.027. 申万祥, 崔超, 刘向辉, 等. 木槿药学研究概况[J]. 畜牧与饲料科学, 2011, 32(11):54-55,60. doi:10.3969/j.issn.1672-5190.2011.11. 027.
    [5] JING L X, ZHENG C L, LIN B Q, et al. Nutritional components in Hibiscus syriacus[J]. Food Res Dev, 2009, 30(6):146-148. doi:10. 3969/j.issn.1005-6521.2009.06.044. 景立新, 郑丛龙, 林柏全, 等. 木槿花中营养成分研究[J]. 食品研究与开发, 2009, 30(6):146-148. doi:10.3969/j.issn.1005-6521.2009. 06.044.
    [6] ZHAO B Q, ZHANG W, TAN J T, et al. Pharmacognostic study on leaves of Hibiscus syriacus L.[J]. Lishizhen Med Mat Med Res, 2007, 18(11):2675-2676. doi:10.3969/j.issn.1008-0805.2007.11.038. 赵冰清, 张为, 谭金桃, 等. 木槿叶的生药学研究[J]. 时珍国医国药, 2007, 18(11):2675-2676. doi:10.3969/j.issn.1008-0805.2007.11. 038.
    [7] PENG Y, TAN J T. Study on the pharmacognosy of Hibiscus syriacus L.[J]. Guid J TCM, 2006, 12(8):98-101. doi:10.13862/j.cnki.cn43-1446/r.2006.08.048. 彭毅, 谭金桃. 木槿的生药学研究[J]. 中医药导报, 2006, 12(8):98-101. doi:10.13862/j.cnki.cn43-1446/r.2006.08.048.
    [8] ZHANG E J, KANG Q S, ZHANG Z. Studies on chemical constituents from the bark of Hibiscus syriacus L.[J]. Chin J Chin Mat Med, 1993, 18(1):37-38. 张恩娟, 康钦树, 张昭. 川槿皮化学成分的研究[J]. 中国中药杂志, 1993, 18(1):37-38.
    [9] YUN B S, RYOO I J, LEE I K, et al. Two bioactive pentacyclic triterpene esters from the root bark of Hibiscus syriacus[J]. J Nat Prod, 1999, 62(5):764-766. doi:10.1021/np9804637.
    [10] LEE S J, YUN Y S, LEE I K, et al. An antioxidant lignan and other constituents from the root bark of Hibiscus syriacus[J]. Planta Med, 1999, 65(7):658-660. doi:10.1055/s-2006-960841.
    [11] YUN B S, LEE I K, RYOO I J, et al. Coumarins with monoamine oxidase inhibitory activity and antioxidative coumarino-lignans from Hibiscus syriacus[J]. J Nat Prod, 2001, 64(9):1238-1240. doi:10.1021/np0100946.
    [12] YOO I D, YUN B S, LEE I K, et al. Three naphthalenes from root bark of Hibiscus syriacus[J]. Phytochemistry, 1998, 47(5):799-802. doi:10. 1016/S0031-9422(97)00674-2.
    [13] CHENG Y L, LEE S C, HARN H J, et al. The extract of Hibiscus syriacus inducing apoptosis by activating p53 and AIF in human lung cancer cells[J]. Amer J Chin Med, 2008, 36(1):171-184. doi:10.1142/S0192415X08005680.
    [14] ZHANG R R, HU R D, LU X Y, et al. Polyphenols from the flower of Hibiscus syriacus Linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell[J]. Biomed Pharmacother, 2010, 130:110517. doi:10. 1016/j.biopha.2020.110517.
    [15] CORY A H, OWEN T C, BARLTROP J A, et al. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture[J]. Cancer Commun, 1991, 3(7):207-212. doi:10.3727/095535491820873191.
    [16] REED L J, MUENCH H. A simple method of estimating fifty per cent endpoints[J]. Amer J Epidemiol, 1938, 27(3):493-497. doi:10.1093/OXFORDJOURNALS.AJE.A118408.
    [17] HELM R F, RALPH J. Lignin-hydroxycinnamyl model compounds related to forage cell wall structure:1. Ether-linked structures[J]. J Agric Food Chem, 1992, 40(11):2167-2175. doi:10.1021/jf00023 a025.
    [18] DAY S H, WANG J P, WON S J, et al. Bioactive constituents of the roots of Cynanchum atratum[J]. J Nat Prod, 2001, 64(5):608-611. doi:10.1021/np000428b.
    [19] MAHAJAN R P, PATIL S L, MALI R S. Convenient microwave assisted synthesis of naturally occurring methyl (E)-cinnamates[J]. Org Prep Proced Int, 2005, 37(3):286-290. doi:10.1080/00304940509354962.
    [20] SHARMA A, SHARMA N, SHARD A, et al. Tandem allylic oxidation-condensation/esterification catalyzed by silica gel:An expeditious approach towards antimalarial diaryldienones and enones from natural methoxylated phenylpropenes[J]. Org Biomol Chem, 2011, 9(14):5211-5219. doi:10.1039/C1OB05293D.
    [21] LIU N Z, ZHAO B Q, QIAN Q G, et al. Chemical constituents from Scropularia ningpoensis[J]. Chin Trad Pat Med, 2019, 41(3):576-579. doi:10.3969/j.issn.1001-1528.2019.03.019. 刘年珍, 赵碧清, 钱群刚, 等. 玄参化学成分的研究[J]. 中成药, 2019, 41(3):576-579. doi:10.3969/j.issn.1001-1528.2019.03.019.
    [22] WANG Z M, YANG L, FANG Y D, et al. Chemical constituents from stems of Uncaria scandens[J]. Chin Trad Herb Drug, 2019, 50(12):2802-2808. doi:10.7501/j.issn.0253-2670.2019.12.009. 王子明, 杨龄, 房银东, 等. 攀茎钩藤茎枝的化学成分研究[J]. 中草药, 2019, 50(12):2802-2808. doi:10.7501/j.issn.0253-2670.2019. 12.009.
    [23] ZHANG C H, LI M, ZENG J X, et al. Chemical constituents from Lagotis brevituba[J]. Chin Trad Pat Med, 2015, 46(10):1437-1440. doi:10.7501/j.issn.0253-2670.2015.10.006. 张晨辉, 李敏, 曾金祥, 等. 短管兔耳草化学成分研究[J]. 中成药, 2015, 46(10):1437-1440. doi:10.7501/j.issn.0253-2670.2015.10.006.
    [24] ZHANG R R, MEI W L, HUANG S Z, et al. Chemical constituents from the cultivated Clerodendranthus spicatus (Thunb.) C. Y. Wu in Hainan[J]. J Trop Subtrop Bot, 2017, 25(2):182-188. doi:10.11926/jtsb.3676. 张荣荣, 梅文莉, 黄圣卓, 等. 海南栽培肾茶的化学成分研究[J]. 热带亚热带植物学报, 2017, 25(2):182-188. doi:10.11926/jtsb.3676.
    [25] HE M, ZHANG J H, HU C Q. Studies on the chemical components of Clematis chinensis[J]. Acta Pharm Sin, 2001, 36(4):278-280. doi:10.3321/j.issn:0513-4870.2001.04.009. 何明, 张静华, 胡昌奇. 威灵仙化学成分的研究[J]. 药学学报, 2001, 36(4):278-280. doi:10.3321/j.issn:0513-4870.2001.04.009.
    [26] FUJIMATU E, ISHIKAWA T, KITAJIMA J. Aromatic compound glucosides, alkyl glucoside and glucide from the fruit of anise[J]. Phytochemistry, 2003, 63(5):609-616. doi:10.1016/S0031-9422(03) 00179-1.
    [27] YAO Y Z, LI S H. Chemical constituents from Angelica keiskei[J]. J Chin Med Mat, 2015, 38(8):1656-1660. doi:10.13863/j.issn1001-4454.2015.08.023. 姚元枝, 李胜华. 明日叶化学成分研究[J]. 中药材, 2015, 38(8):1656-1660. doi:10.13863/j.issn1001-4454.2015.08.023.
    [28] WANG Z Y, TANG S Q. Chemical constituents form Solanum lyratum[J]. Chin Trad Pat Med, 2019, 41(12):2928-2932. doi:10.3969/j.issn. 1001-1528.2019.12.020. 王治阳, 唐素勤. 白毛藤化学成分的研究[J]. 中成药, 2019, 41(12):2928-2932. doi:10.3969/j.issn.1001-1528.2019.12.020.
    [29] SONG W J, ZHANG W, LUO G F. Study on the ethyl acetate-soluble chemical constituents from the seed of Tibetan medicine Thlaspi arvense[J]. NW Pharm J, 2019, 34(4):432-435. doi:10.3969/j.issn. 1004-2407.2019.04.002. 宋文静, 张炜, 骆桂法. 藏药菥蓂子乙酸乙酯部位主要化学成分的研究[J]. 西北药学杂志, 2019, 34(4):432-435. doi:10.3969/j.issn. 1004-2407.2019.04.002.
    [30] HOU X T, HAO E W, QIN J F, et al. Chemical components and pharmacological action for Cinnamomum cassia and predictive analysis on Q-marker[J]. Chin Trad Herb Drugs, 2018, 49(1):20-34. doi:10.7501/j.issn.0253-2670.2018.01.003. 侯小涛, 郝二伟, 秦健峰, 等. 肉桂的化学成分、药理作用及质量标志物(Q-marker)的预测分析[J]. 中草药, 2018, 49(1):20-34. doi:10. 7501/j.issn.0253-2670.2018.01.003.
    [31] FEI J. Study on the total synthesis and bioactivities of syringaresinol and glycosides[D]. Shanghai:Academy of Military Medical Sciences, 2005:33-34. 费嘉. 丁香脂素及其糖苷的全合成以及活性初探[D]. 上海:中国人民解放军军事医学科学院, 2005:33-34.
    [32] POTOČNJAK I, ŠIMIĆ L, GOBIN I, et al. Antitumor activity of luteolin in human colon cancer SW620 cells is mediated by the ERK/FOXO3a signaling pathway[J]. Toxicol in vitro, 2020, 66:104852. doi:10.1016/j.tiv.2020.104852.
    [33] CHE D N, SHIN J Y, KANG H J, et al. Luteolin suppresses IL-31 production in IL-33-stimulated mast cells through MAPK and NF-κB signaling pathways[J]. Int Immunopharmacol, 2020, 83:106403. doi:10.1016/j.intimp.2020.106403.
    [34] Wang S M, Zhang S H, Hu X D. Advances in the study of effect and mechanism of apigenin on hepatocellular carcinoma[J]. Trad Chin Drug Res Pharmacol, 2020, 31(5):616-620. doi:10.19378/j.issn.1003-9783.2020.05.019. 王守梅, 张树辉, 胡旭东. 芹菜素抗肝细胞癌作用及机制的研究进展[J]. 中药新药与临床药理, 2020, 31(5):616-620. doi:10.19378/j.issn.1003-9783.2020.05.019.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

程子洋,柯仲成,张愉快,赵奎奎,王国凯.木槿的化学成分研究[J].热带亚热带植物学报,2021,29(3):331~338

Copy
Share
Article Metrics
  • Abstract:508
  • PDF: 533
  • HTML: 356
  • Cited by: 0
History
  • Received:July 23,2020
  • Revised:October 22,2020
  • Online: May 26,2021
Article QR Code